
Efficient Collision Detection for Curved Solid Objects

Elmar Schömer
MPI für Informatik

Saarbrücken, Germany

schoemer@mpi-sb.mpg.de

Joachim Reichel
MPI für Informatik

Saarbrücken, Germany

reichel@mpi-sb.mpg.de

Thomas Warken
MPI für Informatik

Saarbrücken, Germany

warken@mpi-sb.mpg.de

ABSTRACT
The design-for-assembly technique requires realistic physi-
cally based simulation algorithms and in particular efficient
geometric collision detection routines. Instead of approx-
imating mechanical parts by large polygonal models, we
work with the much smaller original CAD-data directly, thus
avoiding precision and tolerance problems. We present a
generic algorithm, which can decide whether two solids in-
tersect or not. We identify classes of objects for which this
algorithm can be efficiently specialized, and describe in de-
tail how this specialization is done. These classes are objects
that are bounded by quadric surface patches and conic arcs,
objects that are bounded by natural quadric patches, torus
patches, line segments and circular arcs, and objects that are
bounded by quadric surface patches, segments of quadric in-
tersection curves and segments of cubic spline curves. We
show that all necessary geometric predicates can be evalu-
ated by finding the roots of univariate polynomials of degree
at most 4 for the first two classes, and at most 8 for the third
class. In order to speed up the intersection tests we use
bounding volume hierarchies. With the help of numerical
optimization techniques we succeed in calculating smallest
enclosing spheres and bounding boxes for a given set of sur-
face patches fulfilling the properties mentioned above.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Geometric Algorithms, Languages, and

Systems; I.6.m [Simulation and Modeling]: Miscella-
neous

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’02, June 17-21, 2002, Saarbrucken, Germany.
Copyright 2002 ACM 1-58113-506-8/02/0006 ...$5.00.

Keywords
Manufacturing and Assembly Planning, Collision Detection,
Computational Geometry, Geometric Interrogations and Rea-
soning

1. INTRODUCTION
Today, virtual reality techniques are commonly used in

different areas. These are, for instance, the fields of virtual
prototyping and assembly planning, where complex mechan-
ical systems are designed and their assembly and functional-
ity are simulated. An important task in the field of virtual
reality is static collision detection, i.e., to decide whether
or not two objects intersect. This problem is different from
computing the intersection between two objects in CAD ap-
plications, where the complete topology of the intersection
object has to be computed. An algorithm for static collision
detection has only to answer the question if there is an in-
tersection, and if so it must compute at least one point that
witnesses the intersection. Moreover, not only the numer-
ical robustness of the routines is important, but also their
usability in real-time applications. This problem has been
well studied in the past for polyhedral objects (see [11]),
whereas there was only little effort spent on objects with
curved surfaces. Curved objects were instead approximated
by polyhedra than used directly. One reason for this is that
the exclusive use of polyhedra was not seen as a strong re-
striction because any curved object can be approximated
arbitrarily well by a polyhedron. Another reason is that the
basic algorithms, e.g. intersection tests, can be implemented
very easily, robustly and efficiently for polygons. But there
are disadvantages of this approach, too. Obviously there is a
tradeoff between the efficiency of the algorithms that operate
on the objects, and the accuracy of the approximation. The
running time of a collision detection algorithm, for example,
depends intensely on the complexity of the representation
of the objects. On the other hand, there are applications
whose correctness also depends on the accuracy of the ap-
proximation. So it is natural to ask whether it is possible
to handle objects with curved surfaces directly instead of
approximating them. It seems to be worth spending more
effort on the basic algorithms if one can reduce the complex-
ity of the representation of the objects drastically.

Algorithm 1 Facetest(f1, f2)

1: for all edges e of f1 do

2: if e intersects f2 then

3: return INTERSECTION

4: for all edges e of f2 do

5: if e intersects f1 then

6: return INTERSECTION

7: for all loops l of F1 ∩ F2 do

8: determine a point � on l
9: if (f1 contains �) and (f2 contains �) then

10: return INTERSECTION

11: return NO INTERSECTION

In this paper we present an efficient static collision test
that operates on curved solids. The problem will be re-
duced to finding the roots of polynomials in one variable.
We will identify classes of objects for which closed-form so-
lutions exist. This means that all occurring polynomials
have degree at most four. Experiments showed, that using
Cardano’s and Ferrari’s formulae leads to sufficiently accu-
rate results. Moreover, numerical methods are at least by
a factor of ten slower. In a more general setting, we con-
sider surfaces that possess an implicit representation of low
degree (quadrics) and whose spatial trimming curves have
a simple parametric form (quadric intersection curves and
cubic spline curves). We show that all necessary geometric
predicates can be evaluated by finding the roots of univariate
polynomials of degree at most 8. Although NURBS surfaces
are often used in CAD applications, they are not included
in our object classes. The reason for this is that intersection
tests involving NURBS (e.g. [3], [8]) are too time consum-
ing for real-time applications at present. One fundamental
problem in that context is loop detection (cf. [9]), which is
similar to the surface-surface intersection-test that arises in
our algorithm. For applications such as the above mentioned
assembly planning, the restriction to (natural) quadrics and
the torus as surface types is not a problem in general. The
parts that are relevant for assembly processes are typically
simple objects that are composed of natural quadrics and
the torus. Therefore, it is worth developing algorithms that
handle these surface types efficiently.

In order to speed up the collision test we use a hierarchy
of bounding volumes, which allows one to quickly exclude
a large number of object parts from consideration. In this
way we reduce the number of calls to the basic routines,
which consume most of the time during the computation.
We present an algorithm that uses numerical optimization
techniques to compute the smallest enclosing sphere for a
given set of curved faces. Moreover we present an algorithm
to compute an oriented bounding box with locally minimal
volume.

2. A GENERIC ALGORITHM
In this section we describe a generic algorithm for the in-

tersection test between two solids that are given in boundary
representation. More precisely, we want to test whether the
boundaries of the solids intersect, and if this is not the case,
we want to decide whether one object is contained in the
other one. If the intersection test for the boundaries deter-
mines that there is no intersection, then we know that the
objects are either disjoint or one of them is contained in the

other one. In order to decide which case applies, we choose
a point on the first solid and test whether it is inside or out-
side the other one, and vice versa. This point-in-solid-test
can be done by sending a ray from the query point to infin-
ity and counting the number of intersections with the solid.
If this number is even then the point is outside, otherwise it
is inside.

In order to check whether the boundaries of two solids in-
tersect we proceed as follows. For each face f1 of solid 1 and
each face f2 of solid 2 we check whether f1 and f2 intersect.
If we find a pair of intersecting faces, then the solids inter-
sect, otherwise they do not. Instead of testing all possible
pairs of faces, we can use a hierarchy of bounding volumes
to exclude large parts of the objects from consideration. We
refer to section 4 for details on this issue. Algorithm 1 is a
generic algorithm for the intersection test between two faces
f1 and f2, that are embedded on surfaces F1 and F2, respec-
tively. At first, all edges of the boundary of f1 are tested for
intersection with f2 and vice versa (lines 1 to 6). If one of
these tests is positive, we have obviously found an intersec-
tion. Otherwise, we know that each loop of the intersection
curve between the surfaces F1 and F2 lies completely inside
or completely outside of f1 and f2, respectively. Thus, it
suffices to determine one point on each loop and to test,
whether it is contained in both f1 and f2 (lines 7 to 10).
If we find one such point, we have found an intersection,
otherwise we can decide that f1 and f2 do not intersect.

The test in lines 2 and 5 of algorithm 1 consists of two
steps. At first, the curve on which the edge is embedded is
intersected with the surface containing the face. Then, for
each intersection point (if any) one has to check whether it is
contained in both the edge and the face. Thus, the following
four tasks have to be performed.

1. Test whether a point on a curve is contained in an edge
embedded on that curve.

2. Test whether a point on a surface is contained in a face
embedded on that surface.

3. Compute the points of intersection between a curve
and a surface.

4. Compute (at least) one point on each loop of the in-
tersection curve between two surfaces.

We will now briefly describe generically how to solve the first
two of these tasks. More details as well as descriptions of
the remaining two tasks will be given in the next sections,
where we will have a closer look at special classes of objects.

Point-on-Edge-Test. Let the curve C be parameterized,
and let the edge e on C be defined by a parameter interval
[a, b]. Additionally we are given a point � on C. It is easy
to decide whether e contains � , provided that we know the
parameter t of � on C. We simply have to check the con-
dition a ≤ t ≤ b. For the case when we do not know the
parameter t we refer to the sections below dealing with the
special classes of objects.

Point-in-Face-Test. Let the face f be embedded on the
surface F , and let � be a point on F . The boundary of
f is oriented in such a way that, if one looks at f in the
opposite direction of the face normal, then the interior is on
the left-hand side of the oriented boundary. See figure 1 as

Figure 1 Point-In-Face-Test

u1

u2

t2

t1

p2
p1

f

F
det(� 1,

�
1, � 1) > 0

⇒ �
1

inside

det(� 2,
�
2, � 2) < 0

⇒ �
2

outside

an example. The normal in the figure is supposed to point
out of the drawing plane. In order to check whether � lies
inside or outside of f , we follow a continuous path within F
from � to the boundary of f . We call this path a ray, because
this procedure is analogous to the ray-shooting method in
the case of polygons. We compute the tangent � to the ray,
the tangent

�
to the boundary of f and the normal � of F at

the point where the ray first hits a bounding edge. Because
of the orientation of the boundary, the point � lies inside f
iff det(� ,

�
, �) > 0. Figure 1 illustrates the two cases.

We perform the point-in-face-test in 3-space rather than
in the parameter space of the particular surface. The reason
for this is that the curves that we allow as boundaries of the
faces have a relatively simple representation in 3-space. If
we change to the parameter space, then it is not guaranteed
that this is still true. A conic section in 3-space for instance
is in general not a conic section in the parameter space of
the surface.

3. SPECIAL CASES
In this section we present three special classes of objects

for which all computations in the generic algorithm can be
performed efficiently and robustly, i.e., by finding the roots
of polynomials of low degree. The three classes are the fol-
lowing:

Class 1. All faces are embedded on quadrics, and all edges
are segments of conic sections. This is the natural extension
of polyhedra, since the algebraic degree of the boundary
elements is increased by one.

Class 2. The faces are embedded on natural quadrics and
the torus, and the edges are straight line segments and circle
segments. Natural quadrics are planes (as a special case),
spheres, circular cones and circular cylinders. Objects of
this class are the simplest ones that typically occur in CAD
applications.

Class 3. The faces are embedded on quadrics, and the edges
are embedded on intersection curves between quadrics or on
cubic spline curves, which are often used to approximate the
intersection curves. We will also briefly discuss what hap-
pens if we extend this class by the torus. Class 3 is closed
under boolean operations.

When considering the torus as a surface type we always
assume that the major radius is strictly larger than the mi-
nor radius in order to avoid self-intersections.

3.1 Class 1
We will show that for objects of class 1 the degrees of

all polynomials occurring in algorithm 1 of section 2 are at
most four. This means that the four tasks mentioned in that
section can be solved by finding the roots of polynomials of
degree at most four.

Point-on-Edge-Test. As stated in section 2, this task is
trivial provided that the curve parameter of the query point
is known. We will see that this parameter is automatically
computed when we intersect the curve with a surface.

Point-in-Face-Test. Let f be a face that lies on a quadric
Q, and let � be a point on Q. We must show that we can
find a ray in Q from � to the boundary of f such that the
intersection points between this ray and any edge of the
boundary can be computed using only polynomials of suffi-
ciently low degree.

Case 1: If Q is a ruled quadric, i.e. it has a parameteriza-
tion of the form

� (s, t) = � (t) + s � (t),

then we compute the parameters s0 and t0 such that � =
� (s0, t0) and define the ray starting at � by

�
(λ) = � + λ � (t0)

for λ ≥ 0. We compute the intersection points between this
ray and the boundary of f . Since the boundary consists of
conic sections, this can be done by solving only linear and
quadratic equations. The intersection point with minimal
positive λ-parameter is the first point where the ray hits the
boundary of f . Unless this point is a tangential intersection
point, we use the determinant criterion described in section 2
to decide whether � lies inside or outside of f . Otherwise,
we proceed as in case 2.

Case 2: If Q is not ruled or we did not succeed in case 1,
then we choose an arbitrary point � on the boundary of f .
It is always possible to define a plane P through � and �
such that the intersection curve between P and Q connects

� and � . We use that intersection curve, which is a conic
section, to define the ray from � to � . Let P be given by
the parameterization

� (s, t) = � + s � + t � ,

with | � | = | � | = 1 and � T � = 0. By inserting this into
the implicit form defining Q, we obtain an implicit form for
the intersection curve in the parameter space of P . By ap-
plying a principle-axis transformation on this implicit form,
we can classify the conic section and parameterize it ap-
propriately. We choose the parameterization 	 (t) in such a
way that 	 (0) = � and 	 (t) = � for some t > 0. We in-
tersect P with the boundary of f in order to compute the
points of intersection between the ray and the boundary.
We can use the parameterization of the ray to determine
the t-parameters of these points. The point with minimal
positive t-parameter is the first intersection point between
the ray and the boundary. Now we use the determinant cri-
terion in order to decide whether � lies inside or outside of
f .

Curve-Surface-Intersection. Let C be a conic section, and
let Q be a quadric. We want to compute the curve param-

ellipse � (t) = [1 − t2, 2t, 1 + t2]T

hyperbola � (t) = [1 + t2, 2t, 1 − t2]T

parabola � (t) = [t, t2, 1]T

Table 1: Polynomial parameterizations of conic sec-

tions in normal form in the projective plane.

eters of the intersection points between C and Q. We may
assume that we have a polynomial parameterization 	 (t) of
C in homogeneous coordinates. Table 1 shows that the com-
ponents of 	 have degree at most two. Let the quadric Q be
given by

� T
A

� = 0, where A =

��
� A �

� T a0

� �
� (1)

for a symmetric (3 × 3)-matrix A. Inserting 	 (t) into (1)
yields a polynomial of degree at most four in t. The roots of
this polynomial are the parameters of the intersection points
between C and Q.

Surface-Surface-Intersection. Now we must show that we
can compute (at least) one point on each loop of the inter-
section curve between two quadrics, and that we can do so
by finding the roots of polynomials of degree at most four.
Let A and B be two quadrics defined by the (4×4)-matrices
A and B as in (1). The following theorem, which is proved
in [10] is the basis of our approach.

Theorem 1. The intersection curve between two arbi-

trary quadrics lies on a plane, a pair of planes, a hyperbolic

or parabolic cylinder, or a hyperbolic paraboloid.

The key observation for the proof of this theorem is that
any two quadrics Q(λ1) and Q(λ2) in the pencil

Q(λ) = A− λB (2)

intersect in the same curve. The proof of theorem 1 shows
that there is a root of the degree three polynomial det(A−
λB), such that Q(λ) is one of the quadrics mentioned in the
theorem. Once this λ is found, we intersect the quadric A
with Q(λ) instead of B. The next observation is that the
quadrics mentioned in theorem 1 are ruled quadrics that can
be parameterized in the form

� (s, t) = � (t) + s � (t), (3)

where � and � are homogeneous polynomial vectors in the
variable t. It can easily be shown that these parameteriza-
tions have the property

deg(�) + deg(�) ≤ 2. (4)

Inserting this parameterization into the implicit form (1) for
quadric A yields a quadratic equation for s:

α(t)s2 + β(t)s+ γ(t) = 0 with (5)

α(t) = � (t)T
A � (t),

β(t) = 2� (t)T
A � (t) and

γ(t) = � (t)T
A

� (t).

The discriminant of this equation as a polynomial in t is
D = β(t)2 − 4α(t)γ(t) and because of (4) we have

deg(D) ≤ 2(deg(�) + deg(�)) ≤ 4.

If we solve equation (5) for s we obtain

s(t) =
−β(t) ± � D(t)

2α(t)
. (6)

Inserting this into the parameterization (3) gives us a param-
eterization of the intersection curve between the quadrics.
We can find the intervals for t on which this curve is defined,
by solving the equation D(t) = 0. In each such interval we
choose a value for t and compute two points on the curve
(one using the minus sign and one using the plus sign in (6)).
In this way we compute at least one point on each loop of
the intersection curve.

3.2 Class 2
In this section we show that also for the objects in class 2

the polynomials to be solved in algorithm 1 are of degree at
most four. As before, we will have a closer look at the four
tasks to be solved.

Point-on-Edge-Test. As before we will know the curve pa-
rameter of the query point whenever we must perform this
test. So the test is trivial again.

Point-in-Face-Test. Let f be a face embedded on the sur-
face F , and let � be a point on F . If F is a quadric, then
we know from the previous section how to perform this test.
So let F be a torus. Then all edges of f are circle segments.
Let 	 be the center and � the normal of the main circle of
the torus. We denote the minor and major radii by r and
R, respectively. Moreover, let � and � be two unit vectors
that are perpendicular to each other such that � = � × �
holds. A parameterization of the torus is then given by

� = 	 + (R+ r cosψ)(cosϕ � + sinϕ �) + r sinψ � . (7)

For any point � on the torus we denote the parameters of �
by ϕ � and ψ � . These parameters can easily be computed
using inverse trigonometric functions. Let � be an arbitrar-
ily chosen point on the boundary of f . Now we must send a
ray on the torus from � to � . This ray will follow the cross
sectional circle through � until it reaches the profile circle
through � . Then it will follow this circle until it reaches
� . We first compute (ϕ� , ψ�) and (ϕ � , ψ �) in the range of

[−π, π). If ϕ � < ϕ� we replace ϕ � by ϕ � + 2π, and sim-

ilarly for ψ � . In order to compute the intersection points

between the ray and the boundary of f , we consider the
plane defined by

� (λ, µ) = � + λ � + µ � ,

with � = cosϕ� � + sinϕ� � . This plane contains the first

part of the ray. To compute the points of intersection be-
tween the plane and the boundary of f , we need to solve
a quadratic equation. For each such point � we compute
ψ � , and if this value is less than ψ� we add 2π to it. If

the smallest of these values is less than or equal to ψ � , then

� lies on the first part of the ray and we decide whether �

lies inside or outside of f using the determinant criterion.
Otherwise, we proceed similarly for the second part of the
ray.

Figure 2 Intersection of the main circle of a torus and the
C-space obstacle of a cylinder. The intersection is not the
entire main circle.

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������������������������

	�		�		�		�	
�

�

�

�

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��

��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������������������������

������������������������

��

��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��

��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

 � � � � !�!!�!!�!!�!

"�""�""�""�"#�##�##�##�#

(a) (b) (c)

Curve-Surface-Intersection. We know from the previous
section that we need to solve only polynomials of degree at
most four to compute the intersection between conic sections
and quadric surfaces, so we can concentrate on the case that
F is a torus. Let C be a straight line or a circle. The implicit
representation of the torus is

$
(� −)2 +R

2 − r
2 % 2 − 4R2 ((� −) × �)2 = 0. (8)

If C is a straight line with the parameterization � (t) =
� + t � , then inserting � (t) into (8) leads to a polynomial
of degree four in t. The roots of this polynomial are the
parameters of the intersection points on C. For the case of
C being a circle, we refer the reader to [7], where it is shown
that computing the points of intersection between a circle
and a torus can also be reduced to finding the roots of a
polynomial of degree four.

Surface-Surface-Intersection. If the surfaces are both
quadrics, then we can apply the results of section 3.1. Now
let one of the surfaces be a torus. We briefly describe the so-
called configuration space approach used in [7] to determine
points on the intersection curve between a natural quadric
and a torus, as well as between two tori. The idea is the
following. Given two surfaces, say a torus T and a cylinder
C, one of them is considered as the envelope surface of a
moving ball and the other one as an obstacle. Let r be the
minor and R the major radius of the torus. The cylinder
is given by its axis through the point � with direction �
and its radius ρ. Let us assume that r < ρ. In this case
we consider the torus as the envelope surface of a ball with
radius r moving along a circle with radius R in the (x, y)-
plane centered at the origin. Now we replace this moving
ball by its center, and every point of the cylinder by a ball
of radius r. This means that the torus is shrunk to a cir-
cle, whereas the cylinder surface is blown up to its so-called
C-space obstacle which is bounded by the r-offset-surface
of the original cylinder. This offset-surface consists of two
co-axial cylinders with radii ρ− r and ρ+ r. The black dots
in figures 2 and 3 show points of intersection between the
circle and the two co-axial cylinders. They result from po-
sitions where the moving ball touches the original cylinder
surface tangentially. The points on the circle that lie in the
interior of the C-space obstacle result from positions where
the ball properly intersects the cylinder surface. Let S be
a segment of the intersection between the main circle of T
and the C-space obstacle. Then the following can be shown.

• If S is not the entire main circle and not a single point,
then S results from a closed loop of the intersection

Figure 3 Intersection of the main circle of a torus and the
C-space obstacle of a cylinder. The intersection is the entire
main circle.

&'&'&'&'&'&'&'&'&'&'&'&

('('('('('('('('('('('(

)')')')')')')')')')')')

''*'*'*'*'*'*'*'*'*'*

+,

-.

(a) (b)

curve. This is the case for the two segments sketched
in figure 2(a). If S moreover touches the boundary
of the C-space obstacle tangentially in k points, then
the loop has k singular points. This is sketched in
figure 2(b).

• If S is a single point, then it results from an isolated
point of the intersection curve. This is sketched in
figure 2(c).

• If S is the entire main circle and does not touch the
boundary of the C-space obstacle, then the intersection
curve consists of two closed loops (figure 3(a)).

• If S is the entire main circle and touches the bound-
ary of the C-space obstacle in k > 0 points, then the
intersection curve consists of one closed loop with k
singular points (figure 3(b)).

Computing the intersection of the main circle of T with the
C-space obstacle of C means computing the points of inter-
section between a circle and two cylinders. We know from
the previous sections that this can be reduced to finding the
roots of polynomials of degree at most four. Once we have
computed this intersection, we must construct one point on
each loop of the intersection curve.

• In the cases shown in figure 2 and figure 3(b), we first
choose one of the intersection points for each segment.
If for any segment there is a tangential intersection
point, then we choose this point. Let � be such a
point. We know that � results from a situation where
the moving ball touches the cylinder surface. We com-
pute this contact point � ′. Then we determine the
intersection points between the line through � ′ with
direction � and the torus. As a point on the loop, we
can choose that intersection point that is closest to � ′.

• In the case shown in figure 3(a), we may choose any
point on the main circle. Let � be such a point. We
compute the two intersection points between the cross-
sectional circle centered at � and the cylinder surface.
These points lie on the two loops of the intersection
curve.

If the radius ρ of C is equal to r, then the inner cylinder of
the C-space obstacle degenerates to a straight line. In this
case one has to be more careful, but the general idea still
works. If r > ρ, then we consider the torus as the obstacle
and the cylinder as the envelope surface of a moving ball.
We shrink the cylinder to a straight line and replace the

plane ˆ� (s, t) = [t, s, 0]T

hyperbolic cylinder ˆ� (s, t) = � t, 1

t
, s � T

parabolic cylinder ˆ� (s, t) = [t, s,−t2]T

hyperbolic paraboloid ˆ� (s, t) = [t, s, st]T

Table 2: Parametric forms of the quadrics men-

tioned in theorem 1.

torus by its C-space obstacle, which is bounded by the ±ρ-
offset-surfaces of the torus. Then we proceed similar to the
case when r < ρ.

The configuration space approach described above can be
applied to all intersection tests between natural quadrics
and tori, as well as between two tori. In [7] it is described
how this can be done and that all polynomial equations that
have to be solved have degree four at most.

3.3 Class 3
In this section we show that all computations for the col-

lision test between two objects of class 3 can be performed
by solving polynomial equations of degree eight at most. At
the end of the section we will briefly discuss what happens
if we extend this class by torus surfaces.

Point-on-Edge-Test. Let � be a point, and let the edge
be embedded on the curve C. If C is a spline curve, then
we know the curve parameter of � from the curve-surface
intersection-test. So it is trivial to decide whether the edge
contains � . If C is a quadric intersection curve, then the
method that we use for the curve-surface intersection-test
does not produce the curve parameter of the intersection
points. So we must compute the parameter of � in that
case. We assume that the parameterization of C is given
by inserting equation (6) of section 3.1 into the paramet-
ric representation of a quadric mentioned in theorem 1 of
that section. We also assume that that quadric is given by

� (s, t) = Sˆ� (s, t)+ 	 , for a transformation matrix S, a vector
	 , and ˆ� (s, t) being one of the parameterizations in table 2.
The parameterization of C is � (t) = � (s(t), t). Since we
know that � lies on C, we can write ˆ� (s(t), t) = S−1(� −).
Thus, the curve parameter of � is the first component of� −1(� −) (cf. table 2).

Point-in-Face-Test. Let � be the point to be tested for
containment in the face f that is embedded on the quadric
Q, and let � 6= � be a point on the boundary of f . We saw
in section 3.1 that we can always construct a ray from � to �
that lies in Q by intersecting Q with a suitable plane. Inter-
secting the ray with the boundary of f then means comput-
ing the intersections between the plane containing the ray
and the boundary of f . Let C be a curve containing an edge
of the boundary of f . We must show that the intersection
between C and a plane can be easily computed. We make a
case distinction with respect to the type of C.

Case 1: C is a quadric intersection curve. Let the two
quadrics defining C be given by f(�) = 0 and g(�) = 0, re-
spectively, where f and g are quadratic polynomials in the
components of � . Let the plane be defined parametrically

by
� (s, t) = � + s � + t � .

We insert this into f and g and obtain a system of two
quadratic polynomial equations in the variables s and t.
Eliminating s by means of resultants leads to a degree four
polynomial in t (see, for example, [2] for details on resul-
tants). We compute the roots of these polynomials and in-
sert them into f(s, t) = 0 in order to determine a quadratic
equation for the corresponding value of s.

Case 2: C is a cubic spline curve. Then C can be written
as a piecewise polynomial function

� (t) =

���� ���
	 1(t) if 0 ≤ t < u1,

...

	 k(t) if uk−1 ≤ t < 1,

(9)

where the components of the 	 i are polynomials of degree
three. Let the plane be given by � T � − n0 = 0. We insert
each of the 	 i into that equation and obtain a polynomial
of degree three for each piece of C. For the ith piece we
compute the roots of the corresponding polynomial in the
interval [ti−1, ti). In this way, we find all points of intersec-
tion between the plane and C.

Curve-Surface-Intersection. Let Q be a quadric surface
defined by the quadratic form f(�) = 0. As in the previous
paragraph, we make a case distinction according to the curve
type.

Case 1: C is an intersection curve between two quadrics
that are defined by the quadratic forms g(�) = 0 and h(�) =
0. Finding the points of intersection between C and Q is the
same as finding the intersection points between the three
quadrics. This means finding the roots of the system of
polynomial equations

f(�) = g(�) = h(�) = 0. (10)

We write � = [x, y, z]T . In [1], it is shown that this sys-
tem can be reduced to a univariate polynomial of degree at
most eight using multivariate resultants. The multivariate
resultant is a polynomial in the coefficients of a system of
k homogeneous polynomial equations in k variables. This
polynomial vanishes if and only if the system of homoge-
neous equations has a non-trivial solution (in the complex
numbers). The equations in (10) are not homogeneous. So
one regards one of the variables, say x, as an intermediate
constant and introduces a new variable w to homogenize the
polynomials (now considered as polynomials in w, y and z).
Now the multivariate resultant is a polynomial in the coef-
ficients of these homogeneous equations and thus it is also
a polynomial in x. [1] proves that the degree of this resul-
tant as a polynomial in x is at most eight. Now the roots
of this polynomial are computed using numerical methods.
These roots are inserted into (10) in order to obtain three
quadratic equations in two variables for each root. These
can be reduced to univariate polynomials of degree four by
means of ‘standard’ resultants.

Case 2: C is a cubic spline curve. We write C as a piece-
wise polynomial function as in (9). We insert each piece

	 i(t) into the quadratic form f defining the quadric Q and
obtain polynomial equations of degree six. We compute the
roots in the intervals [ti−1, ti) and in this way we find all
points of intersection between C and Q.

Surface-Surface-Intersection. This test is exactly the same
as the one for objects of class 1 described in section 3.1.

4. BOUNDING VOLUMES
In this section we describe how to compute bounding vol-

umes for a given set of faces. We consider spheres and arbi-
trarily oriented boxes as bounding volumes, both of which
can be very efficiently tested for intersection. Another im-
portant property of these types of bounding volumes is that
they do not have to be recomputed as the objects rotate, as
it is the case for axis aligned boxes or fixed direction hulls.

We discuss the problem for objects that are bounded by
quadric surface patches, torus patches and conic arcs.

The general idea behind our approach is to use local opti-
mization. We minimize the volume of the enclosing sphere
or box over all possible centers or orientations, respectively.

Let F be the set of faces for which the bounding volume
is to be computed. Further, let E denote the set of edges of
all faces of F and V the set of vertices.

4.1 Enclosing sphere
The maximal distance between a point � and any point

of the faces, edges and vertices is given by

d(�) = max{max
f∈F

max
x∈f

|� − � |,

max
e∈E

max
x∈e

|� − � |, max
x∈V

|� − � |}. (11)

The radius r() of the bounding sphere with center 	 is given
by d(). Since the volume of a sphere is a strictly monotone
function of the radius, it is sufficient to minimize the radius
in order to minimize the volume.

In the next two subsections we show how to compute the
expressions maxx∈e |

� − � | and maxx∈f |� − � | for an edge
e ∈ E and a face f ∈ F , respectively.

Maximal distance point-edge. Let e ∈ E be an edge em-
bedded on the curve C. We compute the local maxima of
the function

g � (�) = |� − � |, � ∈ C. (12)

For each local maximum we check whether the correspond-
ing point is part of the edge e or not (cf. section 3).

Plugging the rational parameterization of a conic C into
equation (12) results in a quartic polynomial.

Maximal distance point-face. Let f ∈ F be a face em-
bedded on the surface F . We compute the local maxima of
the function

g � (�) = |� − � |, x ∈ F. (13)

For each local maximum we check whether the correspond-
ing point is contained in face f or not (cf. section 3).

Function (13) has no local maxima if F is an unbounded
surface, e.g. a plane, a cone or a cylinder. If F is a sphere
given by | � − 	 | = r with 	 6= � , there is exactly one local

maximum �
max = 	 + r

	 −
�

| 	 −
�
|
. If 	 = � , all points on the

sphere have distance r from the point � . If F is an ellipsoid,
the maximal distance between � and F can be described by
the roots of a polynomial of degree six; see [4] for details. If
F is a torus with center 	 , normal � with | � | = 1 and radii

R and r with R > r, the local maximum of function (13)
can be computed as follows:

�
max = ˜� max − r

� − ˜� max

|� − ˜� max|
,

˜� max = 	 −R
� − 	 − � T (� −) �
|� − 	 − � T (� −) � |

.

Smallest enclosing sphere. Our aim is to compute the
optimal sphere center 	

�
, such that its radius r(

�
) is the

minimum of d(�).

Lemma 1. The maximal distance d(�) is a convex func-

tion of � .

Since the function d(�) is convex, there is exactly one local
minimum. Thus it is sufficient to compute the local min-
imum of d(�) in order to compute the optimal bounding
sphere.

We use two local optimization methods, both presented in
[12], the downhill simplex method due to Nelder and Mead
and Powell’s method.

4.2 Enclosing boxes
In order to specify the orientation of an enclosing box we

use two different representations. A set of three orthonor-
mal vectors (

�
1,

�
2,

�
3) defines the axes of the box. The

second representation uses three angles (α, β, γ) ∈ [−π, π]×
[−π

2
, π

2
] × [−π, π]. Those angles are interpreted as Z-Y-X

Euler angles. The columns of the corresponding rotation
matrix RZY X(α, β, γ) are the vectors

�
1,

�
2 and

�
3.

Let
�

denote a direction, |
�
| = 1. The extent in direction�

is given by

e(
�
) = emax(

�
) − emin(

�
)

emax(
�
) = max{max

f∈F
max
x∈f

� T � ,max
e∈E

max
x∈e

� T � ,max
x∈V

� T � }

emin(
�
) = min{min

f∈F
min
x∈f

� T � ,min
e∈E

min
x∈e

� T � ,min
x∈V

� T � }.

A corner point of the enclosing box is given by the solution
of

� T
i

� = emin(
�

i) for i = 1, 2, 3. The edges � 1, � 2 and � 3

of this box are given by � i = e(
�

i)
�

i for i = 1, 2, 3, and the
volume can be computed as V (α, β, γ) = � 3

i=1
e(

�
i).

In the next two subsections we show, how to compute
the expressions maxx∈e

� T � , maxx∈f

� T � , minx∈e

� T � and
minx∈f

� T � for an edge e ∈ E and a face f ∈ F .

Extent of an edge. Let e ∈ E be an edge embedded on the
curve C. We compute the local extrema of the function

g � (�) =
� T � , x ∈ C. (14)

For each local extremum we check whether the correspond-
ing point is part of the edge e or not (cf. section 3).

We do not need to consider straight lines since the end-
points generate the correct values for

� T � . It is easy to see
that if C is a conic, then computing these extrema can be
done by solving quadratic equations.

Extent of a face. Let f ∈ F be a face embedded on the
surface F . We compute the local extrema of the function

g � (�) =
� T � , x ∈ F. (15)

For each local extremum we check whether the correspond-
ing point is contained in the face f or not (cf. section 3).

We do not need to consider planes, cones or cylinders,
since there are always edges or points that contribute the
same value for

� T � . If F is a sphere given by | � − 	 | = r,
the local extrema of (15) are 	 ± r

�
. For all other quadric

surfaces we use the following general approach. If F is a
quadric given in the form (1), then the direction of the face
normal � (�) at point � can be computed as � (�) = A

� + � .
For a point � with extremal extent, it holds that � (�) = λ

�
.

Solving this equation for � and substituting into (1) yields
a quadratic equation in λ.

Let F be a torus given by equation (7). Then the local
extrema of (15) can be computed by first determining the
extremal points on the main circle of F , which leads to a
quadratic equation, and then adding the vector ±r

�
to each

of these points. This leads to the extrema

�
max
min

= 	 ±R

�
− (

� T �) ��
1 − (

� T �)2
± r

�
.

Smallest enclosing box. Now we focus on minimizing the
volume of the enclosing box. Our aim is to compute an
orientation (α∗, β∗, γ∗), such that the volume of the corre-
sponding enclosing box is locally minimal. As in the case
of the smallest enclosing sphere, we use local optimization
methods to minimize the volume V (α, β, γ). But in contrast
to the smallest enclosing sphere, the objective function is no
longer convex. Thus we only get boxes with locally minimal
volume.

The quality of the computed local minimum can be im-
proved by repeating the optimization process with differ-
ent starting points. Thus it is likely that the optimization
method computes different local minima and one chooses
the minimum with the smallest function value.

5. CONCLUSIONS
In the previous sections we described a generic algorithm

for the static intersection test between two solids with curved
surfaces. We showed that all computational tasks can be re-
duced to polynomial equations of low degree by restricting
oneself to certain classes of objects. Since there are closed-
form solutions for polynomial equations of degree at most
four, these equations can be solved robustly and efficiently.
Our experiments showed that using the explicit formulae for
the roots of these polynomials is sufficiently accurate and
much faster than numerical methods. For polynomials of
higher degree we use the eigenvalue method (see [5]). This
method is also very efficient and numerically robust since
the degrees of the arising polynomials are at most eight.

We also presented a method for computing optimal bound-
ing volumes for a given set of surfaces. Since the computa-
tion of the bounding volumes is done in a preprocessing step,

the time consumption of the methods used there is not a
problem. With a heuristic similar to the one used in [6] to
divide the set of surfaces into two proper subsets we are able
to build up a hierarchy of bounding volumes. This structure
can be used to speed up the collision detection by quickly
excluding large parts of the object from the computation.

6. ADDITIONAL AUTHORS
Additional author: Christian Lennerz (Max-Planck-Institut

für Informatik, Saarbrücken, Germany, email: lennerz@mpi-
sb.mpg.de)

7. REFERENCES
[1] E.-W. Chionh, R.N. Goldman, and J. R. Miller. Using

multivariate resultants to find the intersection of three
quadric surfaces. ACM Transactions on Graphics,
10(4):378–400, 1991.

[2] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties,

and Algorithms. Springer-Verlag New York, Inc., 2nd
edition, 1997.

[3] T. Dokken. Aspects of Intersection Algorithms and

Approximation. Ph.D. thesis, University of Oslo, July
1997.

[4] D. H. Eberly. 3D game engine design : a practical

approach to real-time computer graphics. Morgan
Kaufmann, 2001.

[5] S. Fortune. An iterated eigenvalue algorithm for
approximating the roots of a univariate polynomial. In
Internat. Symposium on Symbolic and Algebraic

Computation, ISSAC 2001, pages 121–128, 2001.

[6] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree:
A hierarchical structure for rapid interference
detection. Computer Graphics, pages 171–180, August
1996. Proc. SIGGRAPH’96.

[7] Ku-Jin Kim. Torus and Simple Surface Intersection

Based on a Configuration Space Approach. Ph.D.
thesis, Department of Computer Science and
Engineering, POSTECH, February 1998.

[8] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and
A. Pattekar. Rapid and accurate contact
determination between spline models using ShellTrees.
Computer Graphics Forum, 17(3):315–326, 1998.

[9] S. Krishnan and D. Manocha. Algebraic loop
detection and evaluation algorithms for curve and
surface interrogations. In Proceedings of Graphics

Interface, pages 87–94, May 1996.

[10] J. Levin. A parametric algorithm for drawing pictures
of solid objects composed of quadric surfaces.
Commun. ACM, 19(10):555–563, 1976.

[11] M. Lin and S. Gottschalk. Collision detection between
geometric models: a survey. In Proc. of IMA

Conference on Mathematics of Surfaces, 1998.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes in C : the art of

scientific computing. Cambridge Univ. Press, 2nd
edition, 1994.

