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ABSTRACTWe analyze the performane of evolutionary algorithms onvarious matroid optimization problems that enompass avast number of e�iently solvable as well as NP-hard ombi-natorial optimization problems (inluding many well-knownexamples suh as minimum spanning tree and maximum bi-partite mathing). We obtain very promising bounds on theexpeted running time and quality of the omputed solution.Our results establish a better theoretial understanding ofwhy randomized searh heuristis yield empirially good re-sults for many real-world optimization problems.
Categories and Subject DescriptorsG.2.1 [Combinatoris℄: Combinatorial algorithms; F.2.2[Nonnumerial Algorithms and Problems℄: Computa-tions on disrete strutures
General TermsTheory, Algorithms, Performane
Keywordsevolutionary algorithms, matroids, minimum weight basis,matroid intersetion, randomized searh heuristis
1. INTRODUCTIONMotivation. While evolutionary algorithms are known towork (empirially) well for many optimization problems inpratie, a satisfying and rigorous mathematial analysis oftheir performane is one of the main hallenges in the areaof geneti and evolutionary omputing. Interesting resultshave been obtained for some important, isolated optimiza-tion problems but a general theoretial explanation of thebehavior of evolutionary algorithms is still missing. Theaim of this paper is to make progress in this diretion. Westudy the performane of evolutionary algorithms on a verygeneral lass of ombinatorial optimization problems andobtain promising results on the running time and qualityof the omputed solutions. A summary of our results to-gether with an overview of the omplexity of the onsideredoptimization problems an be found in Table 1.Independene Systems and Matroids. Matroid theoryprovides a framework in whih a substantial lass of prob-
∗This work was supported by the Deutshe Forshungsge-meinshaft (DFG) as part of the Collaborative ResearhCenter �Computational Intelligene� (SFB 531).

lems in ombinatorial optimization an be studied from auni�ed perspetive. Matroids form a speial lass of inde-pendene systems that are given by a �nite set E and afamily of subsets F ⊆ 2E suh that F is losed under sub-sets. The subsets ontained in F are alled independent anda maximal independent subset is alled a basis of the in-dependene system. A preise de�nition of matroids alongwith some important lassial results is given in Setion 2.Many ombinatorial optimization problems an be for-mulated as follows: Given an independene system on aweighted set E, �nd a basis of minimum (or maximum)weight. We mention as an example the problem of �nd-ing a stable set with maximum weight in a given graph withweights on the nodes (here, the underlying independenesystem is not a matroid).A famous result byRado [20℄, Gale [7℄, andEdmonds [4℄states that an independene system is a matroid if and onlyif the greedy algorithm omputes a minimum weight basisfor arbitrary weights on the elements of E. This algorithmiharaterization of matroids highlights their relevane in thearea of e�ient algorithms and ombinatorial optimization.Examples of Matroids and First Results. Graphi ma-troids are an important example of matroids where E is theedge set of a graph G = (V, E) and a subset of edges isindependent if it does not ontain a iruit. If the givengraph G is onneted, the problem of �nding a minimumweight basis of the orresponding graphi matroid is theminimum spanning tree problem. In the ontext of evolu-tionary algorithms, Raidl and Julstrom [21℄ analyze dif-ferent enodings for the minimum spanning tree problemand propose to work with so-alled edge sets. NeumannandWegener [16, 17℄ study evolutionary algorithms for theminimum spanning tree problem. They prove that two spe-i� evolutionary algorithms, (1+1) EA and RLS, omputea minimum spanning tree in expeted polynomial time, i.e.,
O(|E|2(log |V | + log wmax)), where wmax denotes the maxi-mum weight of any edge; moreover, they establish a lowerbound of Ω(|E|2 log |V |). In Setion 3 we generalize thisresult to arbitrary matroids (see also Table 1).Another important example of matroids are linear ma-troids where E is a set of vetors and a subset is indepen-dent if the vetors ontained in it are linearly independent.Linear matroids our, for example, in the minimum ylebasis problem where the task is to �nd a minimum weightbasis of the yle spae of a given graph with weights on theedges. This problem is an important building blok in vari-ous real-world optimization problems suh as, for example,in eletrial networks, strutural engineering, hemistry and



problem e�ient algorithm known (1+1) EA and RLS lower bound on(1+1) EA and RLSminimum weight basis O(|E| log |E|) O(|E|2(log |E| + log wmax)) Ω(|E|2 log r(E)) [16, 17℄unweighted matroid intersetion O(|E|2.5)
(1 − ε)-approximation in

O(|E|2⌈1/ε⌉)
exponential [8, 9℄weighted matroid intersetion O(|E|2.5(log |E| + log wmax))

1/2-approximation in
O(|E|4(log |E|+ log wmax))

exponential [8, 9℄intersetion of p ≥ 3 matroids NP-hard 1/p-approximation in
O(|E|p+2(log |E|+log wmax))

exponentialTable 1: A summary of results on various matroid optimization problems. The problems are desribed inthe �rst olumn. The seond olumn gives the running time of known e�ient algorithms. The third olumndesribes the results for (1+1) EA and (modi�ations of) RLS obtained in this paper. The last olumn giveslower bounds on the running time of (1+1) EA and RLS for obtaining an optimal solution.biohemistry, and in periodi timetabling; see, e.g., [15℄ fordetails.Matroid Intersetion. Matroids have even more algo-rithmi power than just that of the greedy method. Ed-monds [3, 14℄ observed that also the (weighted) matroidintersetion problem an be solved e�iently. That is, amaximum weight ommon independent set in two matroidsan be found in strongly polynomial time. The matroid in-tersetion problem has appliations in many settings suhas, for example, edge onnetivity [5℄, survivable networkdesign [1℄, onstrained minimum spanning trees [12℄, andmultiast network odes [11℄.The most prominent example of an optimization prob-lem that an be formulated as a matroid intersetion prob-lem is the maximum weight mathing problem in bipartitegraphs. Giel and Wegner [8, 9, 10℄ analyze evolutionaryalgorithms for the maximum mathing problem (with unitweights). They show that (1+1) EA and RLS are (ran-domized) polynomial-time approximation shemes with anexpeted runtime of O(|E|2⌈1/ε⌉); moreover they onstrut alass of bipartite graphs for whih the expeted optimizationtime of these algorithms grows exponentially. Motivated bythese results we prove in Setion 4 that (1+1) EA and RLSare polynomial time approximation shemes for the matroidintersetion problem with unit weights (see also Table 1).Our result for the unweighted matroid intersetion prob-lem annot be generalized easily to the weighted ase andalso from the viewpoint of e�ient algorithms it is knownthat the weighted version of the problem is somewhat harderthan the unweighted problem. In Setion 5 we prove that(1+1) EA and a slightly modi�ed version of RLS are 1
2
-approximation algorithms for the weighted matroid inter-setion problem (see also Table 1).NP-Hard Problems. The problem of �nding a maximum-size ommon independent set in three or more matroids isNP-hard as �nding a Hamiltonian iruit in a direted graphis a speial ase. On the other hand it is known that anyindependene system an be represented as an intersetion of�nitely many matroids and a vast number of ombinatorialoptimization problem falls into this ategory. In Setion 6 weprove that (1+1) EA and (an appropriately modi�ed versionof) RLS are 1

p
-approximation algorithms for the NP-hardproblem to �nd a maximum-weight independent set in theintersetion of p ≥ 3 matroids (see also Table 1).

2. PRELIMINARIESWe study in this paper the behavior of two simple evolu-tionary algorithms, namely (1+1) EA and randomized loalsearh (RLS), whih is sometimes also alled loal (1+1) EA.Both algorithms operate on bitstrings of �xed length anddi�er in the mutation operator. Initially, a bitstring s ∈
{0, 1}n is hosen randomly (whenever we speak of random-ness, we mean uniform randomness). The mutation opera-tors of (1+1) EA and RLS are de�ned as follows:(1+1) EA: Obtain the bitstring s′ by �ipping eah bitof s independently of the other bits with probability 1/n.RLS: Choose b ∈ {0, 1} randomly. If b = 0, hoose i ∈
{1, . . . , n} randomly and obtain s′ by �ipping the i-th bit of
s. If b = 1, hoose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} randomlyand obtain s′ by �ipping the i-th and j-th bit of s.The urrent searh point s is replaed by s′ if the �tnessvalue of s′ is better than or equal to that of s. This proe-dure repeats until a stopping riterion is met. In this paperwe analyze the expeted number of steps until we reah aertain �tness value orresponding to the problem solution.We shall now give the de�nition of matroids as well assome well-known properties used in this paper. See [14℄,[19℄, or [22℄, for a more detailed disussion.Definition 2.1. Let E be a �nite set and F ⊂ 2E. Thepair M = (E,F) is alled a matroid if(i) ∅ ∈ F,(ii) ∀X ⊆ Y ∈ F : X ∈ F, and(iii) ∀X, Y ∈ F, |X| > |Y | : ∃ x ∈ X \ Y with Y ∪ {x} ∈ F.The elements of F are alled independent, the elements of
2E \ F are alled dependent. The maximal independent setsare alled bases of M , the minimal dependent sets are allediruits. For X ⊆ E, a maximal independent subset of Xis alled a basis of X. The rank r(X) of X is the maximalardinality of a basis of X, r(X) := max{|Y | | Y ⊆ X, Y ∈
F}.Proposition 2.2. Let (E, F) be a matroid. Then(i) for X ⊆ E, all bases of X have the same ardinality;(ii) for all bases B1, B2 of M , x ∈ B1 \ B2 there exists

y ∈ B2 \B1 suh that (B1 \ {x})∪{y} is a basis of M .Proposition 2.3. Let (E,F) be a matroid and r(·) itsrank funtion. Then(i) r(∅) = 0,(ii) ∀X ⊆ E : r(X) ≤ |X|,



(iii) ∀X ⊆ E : r(X) = |X| ⇔ X ∈ F,(iv) ∀X, Y ⊆ E,X ⊆ Y : r(X) ≤ r(Y ).For X ∈ F and y ∈ E suh that X ∪ {y} 6∈ F, we use
C(X, y) to denote the unique iruit in X∪{y}. If X∪{y} ∈
F, we de�ne C(X, y) := ∅.
3. MINIMUM WEIGHT BASISThe results presented in this setion generalize and aremotivated by the orresponding results for the minimumspanning tree problem in [16, 17℄. We onsider the followingproblem. Given a matroidM = (E, F) and a weight funtion
w : E → N, �nd a basis B ⊆ E of M of minimum weight.The weight of a subset of E is de�ned as the sum of theweights of its elements. The weight of an optimal solutionis denoted by wOPT .We assume that the set F of independent subsets is im-pliitly given by a rank orale that for any set X ⊆ E om-putes its rank r(X). Note that a rank orale is polynomiallyequivalent to an independene orale [14℄.The searh spae equals S = {0, 1}|E|, where eah posi-tion of the bitstring orresponds to an element from E =
{e1, . . . , e|E|}. A searh point s ∈ {0, 1}|E| orresponds tothe subset E(s) := {ei ∈ E | si = 1, 1 ≤ i ≤ |E|} of E. Wede�ne the weight w(s) of a bitstring s as the weight of theorresponding set E(s). In a similar way we de�ne the rank
r(s) of a bitstring s as r(s) := r(E(s)).We onsider two �tness funtions f and f ′. Let wmaxdenote the maximum weight of any element in E. Then
wub := |E| · wmax is an upper bound on the weight of anysubset of E. Let

f(s) := (r(E) − r(s)) · |E| · wub

+ (|E(s)| − r(E)) · wub +
X

e∈E(s)

w(e)be the �rst �tness funtion whih is to be minimized. Theexpression is dominated by the �rst term whih enodes thenumber r(E) − r(s) of elements that have to be added to
E(s) to get a superset of a basis. If E(s) is a superset of abasis, this term vanishes and the seond term dominates theexpression. The fator |E(s)| − r(E) denotes the number ofelements that have to be removed from E(s) to get a basisof M . If E(s) is a basis of M , both the �rst and seond termvanish and the �tness of s orresponds to the weight of theelements in E(s).The seond term in the �tness funtion f expliitly pe-nalizes iruits. This is not neessary, sine the removal ofan element of a iruit leads to a weight derease by itself.Therefore, we also investigate the �tness funtion

f ′(s) := (r(E) − r(s)) · wub +
X

e∈E(s)

w(e) .Note that f ′(s) equals f(s) if s desribes a spanning tree. Weshall see that the additional information onerning |E(s)|in the �rst �tness funtion f allows to obtain better bounds.Proposition 3.1. The expeted number of generationsuntil RLS or (1+1) EA working on one of the �tness fun-tions f or f ′ onstruts a superset of a basis of M is boundedby O(|E| log r(E)).Proof. Suppose the initial searh point s does not de-sribe a superset of a basis. Then r(s) < r(E) holds. Both

�tness funtions f and f ′ are de�ned in suh a way that therank of E(s) will never derease in aepted steps. For eahsubset X ⊆ E, there are at least r(E)− r(X) elements of Ewhose inlusion inreases the rank of X by 1.The probability that a step inreases the rank of E(s) isat least 1
2
· r(E)−r(s)

|E|
for RLS and 1

2e
· r(E)−r(s)

|E|
for (1+1) EA.The latter probability is a lower bound on

(1 − |E|−1)r(s) · (1 − (1 − |E|−1)r(E)−r(s))whih denotes the probability that r(s) elements of a �xedbasis of E(s) remain unhanged and at least one of r(E) −
r(s) elements that enlarge this independent subset is �ipped.Hene, the expeted number of generations until s desribesa superset of some basis is bounded from above by

r(E)−1
X

i=0

2e|E|

r(E) − i
= O(|E| log r(E)) .This onludes the proof.Proposition 3.2. The expeted number of generationsuntil RLS or (1+1) EA working on the �tness funtion fonstruts a basis of M starting from a superset of a basisis bounded by O(|E| log |E|).Proof. Suppose the initial searh points s desribes aproper superset of some basis of M . Then |E(s)| > r(E)holds. The �tness funtion f is de�ned in suh a way thatonly supersets of bases are aepted, i.e., the rank of E(s)does not hange. Furthermore, the ardinality of E(s) neverinreases.The probability that a step dereases the ardinality of

E(s) while maintaining a superset of a basis is at least 1
2
·

|E(s)|−r(E)
|E|

for RLS and 1
2e

· |E(s)|−r(E)
|E|

for (1+1) EA. Thelatter probability is a lower bound on
(1 − |E|−1)r(E) · (1 − (1 − |E|−1)|E(s)|−r(E))whih denotes the probability that r(E) elements of a �xedbasis of M ontained in E(s) remain unhanged and atleast one of the remaining |E(s)| − r(E) elements is �ipped.Hene, the expeted number of generations until s desribesa basis of M is bounded from above by

|E|
X

i=r(E)+1

2e|E|

i − r(E)
= O(|E| log |E|) .This onludes the proof.We remark that Proposition 3.2 holds also for RLS andthe �tness funtion f ′, but not for (1+1) EA and f ′. SineRLS �ips at most two bits per step, an inrease in |E(s)|implies an inreasing weight. Consequently, steps inreasing

|E(s)| are not aepted. This argument does not hold forthe (1+1) EA, whih might exlude a heavy element andinlude two or more light elements instead while maintaininga superset of a basis.The following proposition will later turn out to be usefulin order to prove a bound on the number of steps needed toget from an arbitrary basis to a minimum weight basis.Proposition 3.3. Given a matroid M = (E,F) and twosets A, B ∈ F suh that C(B, a) 6= ∅ for all a ∈ A \ Bholds. Then there exists a bipartite mathing in the graph
G := (VG, EG), VG := A △ B, EG := {(a, b) | a ∈ A \ B, b ∈
C(B, a) \ A} overing A \ B.



Proof. Note that G is a bipartite graph with bipartition
V = (A \B) ∪̇ (B \A). For X ⊆ A \B de�ne N(X) := {b ∈
B \ A | ∃x ∈ X : (x, b) ∈ EG}. We show |N(X)| ≥ |X|for all X ⊆ A \ B. Then the laim follows by the lassialTheorem of Hall (see, e.g., [14℄).Suppose there exists X ⊆ A \ B with |N(X)| < |X|. Thesets X and N(X) are independent and disjoint as subsets of
A\B and B\A, respetively. Moreover, the sets X ∪̇(A∩B)and N(X) ∪̇ (A∩B) are independent as subsets of A and B,respetively, and |N(X) ∪̇ (A ∩ B)| < |X ∪̇ (A ∩ B)| holds.Hene, by De�nition 2.1, there exists x ∈ (X ∪̇ (A ∩ B)) \
(N(X) ∪̇ (A∩B)) = X \N(X) = X suh that N(X) ∪̇ (A∩
B) ∪̇ {x} ∈ F. On the other hand, by the de�nition of N(·),the set N(X) ∪̇(A∩B) ∪̇{x} ontains the yle C(B, x).Proposition 3.4. Let s be a searh point desribing anon-minimum weight basis B of M . Then there exists some
k ∈ {1, . . . , r(E)} and k di�erent aepted 2-bit �ips suhthat the average weight derease of these �ips is (w(s) −
wOPT )/k.Proof. Let B∗ denote a minimumweight basis of M andde�ne k := |B∗ \ B|. By applying Proposition 3.3 to B and
B∗ we obtain an injetive funtion α : B∗ \ B → B \ B∗suh that α(e) ∈ C(B, e). By Proposition 2.2(i), all bases ofa matroid have equal ardinality, hene, the funtion α is abijetion.By Proposition 2.2(ii), B ∪ {e} \ {α(e)} is again a basisof M . Furthermore, sine B∗ is an optimal basis w(e) ≤
w(α(e)) holds for all e ∈ B∗ \ B. Hene, exhanging eand α(e) does not inrease the total weight and the 2-bit�ip involving e and α(e) is aepted. All k 2-bit �ips to-gether hange B into B∗ and the total weight derease is
w(s)−wOPT . Hene, the average weight derease is (w(s)−
wOPT )/k.The analysis performed later an be simpli�ed if the pa-rameter k in Proposition 3.4 is independent of the searhpoint s. This an be easily aomplished by allowing non-aepted 2-bit �ips whose weight derease is de�ned as 0.We add r(E)− k non-aepted 2-bit �ips to the k 2-bit �ipsfrom Proposition 3.4.Proposition 3.5. Let s be a searh point desribing abasis B of M . Then there exists a set of r(E) 2-bit �ipssuh that the average weight derease of these �ips is (w(s)−
wOPT )/r(E).Sine Proposition 3.2 does not hold for the �tness funtion
f ′ in ombination with (1+1) EA, we need a result similarto Proposition 3.5 for supersets of a basis. Sine we startfrom supersets of a basis, we need to allow also 1-bit �ips toreah a basis.Proposition 3.6. Let s be a searh point desribing asuperset of a basis. Then there exists a set of |E| − r(E)1-bit �ips and a set of r(E) 2-bit �ips suh that the averageweight derease is (w(s) − wOPT )/|E|.Proof. Let B′ ⊆ E(s) denote a basis of M and s′ theorresponding searh point. Consider the set of |E(s)| −
r(E) 1-bit �ips orresponding to the elements in E(s) \ B′.Their removal from E(s) does not hange the rank of E(s),hene the 1-bit �ips are aepted. We obtain the basis B′and apply Proposition 3.5. Alltogether, we obtain a weightderease of w(s) − wOPT and performed |E(s)| �ips.

Similar to Proposition 3.5 we allow non-aepted 1-bit�ips whose weight derease is de�ned as 0. By adding |E| −
|E(s)| non-aepted 1-bit �ips we obtain the laimed re-sult.Theorem 3.7. The expeted number of generations untilRLS or (1+1) EA working on the �tness funtion f on-struts a minimum weight basis is bounded by
O(|E|2(log r(E) + log wmax)).Proof. By Proposition 3.1 and 3.2, it is su�ient to on-sider the searh proess after having found a searh point sdesribing a basis. Then, by Proposition 3.5, there existsa set of r(E) 2-bit �ips whose average weight derease is
(w(s)−wOPT )/r(E). The hoie of suh a 2-bit �ip is alleda good step. The probability of performing suh a goodstep equals Θ(r(E)/|E|2) and eah of the good steps is ho-sen with the same probability. A good step dereases thedi�erene between the weight of the urrent searh point
s and wOPT on average by a fator of 1 − 1/r(E). Thisholds independently of previous good steps. Hene, after
N good steps, the expeted di�erene between w(s) and
wOPT is given by (1 − 1/r(E))N · (w(s) − wOPT ). Sine
w(s) ≤ r(E) · wmax and wOPT ≥ 0, we obtain the upperbound (1 − 1/r(E))N · D, where D := r(E) · wmax.If N := ⌈(ln 2) · r(E) · (log 2D)⌉, this bound is at most
1
2
. Sine the di�erene is not negative, by Markov's in-equality, the probability that the bound is less than 1 isat least 1/2. The di�erene is an integer implying thatthe probability of having found a minimum weight basisis at least 1/2. Therefore, the expeted number of goodsteps until a minimum weight basis is found is bounded by

2N = O(r(E) log D) = O(r(E)(log r(E) + log wmax)).By our onstrution, there are always exatly r(E) goodsteps. Therefore, the probability of a good step does notdepend on the urrent searh point. Hene, the expetednumber of generations until l good steps have been madeequals Θ(l|E|2/r(E)). Altogether, the expeted number ofiterations is bounded by
O(N |E|2/r(E)) = O(|E|2(log r(E) + log wmax)) .This onludes the proof.A slightly worse bound an be shown for the �tness fun-tion f ′ by applying Proposition 3.6 instead of Proposition 3.5.Theorem 3.8. The expeted number of generations untilRLS or (1+1) EA working on the �tness funtion f ′ on-struts a minimum weight basis is bounded by

O(|E|2(log |E| + log wmax)).Proof. By Proposition 3.1, it is su�ient to onsider thesearh proess after having found a searh point s desribinga superset of a basis. Then, by Proposition 3.6, for eah stepthere exists a set of |E|−r(E) 1-bit �ips and a set of r(E) 2-bit �ips suh that the total weight derease is w(s)−wOPT .The hoie of suh a bit �ip is alled a good step. If the totalweight derease of the 1-bit �ips is larger than the totalweight derease of the 2-bit �ips, the step is alled a 1-step.Otherwise, it is alled a 2-step. Note that the notion of a2-step does not imply that we atually perform a 2-bit �ip,similarly for 1-steps and 1-bit �ips.Consider the sequene of all steps until a minimum weightbasis is reahed. Suppose that at least half of the required



steps are 2-steps. Consider only these 2-steps. The probabil-ity of a good 2-bit �ip equals Θ(r(E)/|E|2). The expetedweight derease of suh a 2-bit �ip in a 2-step is at least
1
2
(w(s) − wOPT )/r(E), resulting in a fator not larger than

1−1/(2r(E)). Hene, we an adapt the proof of Theorem 3.7with N ′ := ⌈(ln 2) · 2r(E) · (log 2D′)⌉, D′ := |E| · wmax andobtain the bound O(N ′|E|2/r(E)) for the expeted numberof 2-steps. Sine the majority of all steps are 2-steps, thelaimed result follows.Now suppose that at least half of the required steps are1-steps and onsider only these 1-steps. The probability ofa good 1-bit �ip equals Θ(k/|E|) for k = |E| − r(E). Theexpeted weight derease of suh a 1-bit �ip in a 1-step isat least 1
2
(w(s) − wOPT )/k, resulting in a fator not largerthan 1 − 1/(2k). Again, we an apply the proof tehniqueof Theorem 3.7 where N ′′ := ⌈2 · (ln 2) · k · (log 2D′)⌉ =

O(|E|(log |E| + log wmax)) takes the role of N . We obtainthe upper bound
O(N ′′|E|/k) = O(|E|(log |E| + log wmax))for the expeted number of 1-steps. Sine the majority ofall steps are 1-steps, the total number of steps is of the sameorder, whih is even smaller than the proposed bound.Neumann and Wegener [16, 17℄ show a lower bound of

Ω(|E|2 log r(E)) for a speial lass of instanes of the mini-mum spanning tree problem. Hene, Ω(|E|2 log r(E)) is alsoa lower bound for the minimum weight basis problem.We brie�y want to mention the bene�ts of more problem-spei� mutation operators. After having found a basis of amatroid, we are only interested in o�spring with the sameardinality. The probability of suh an o�spring an be in-reased using the following two mutation operators: If RLS�ips two bits, it hooses randomly a 0-bit and randomly a1-bit. If s ontains k 1-bits, (1+1) EA �ips eah 1-bit withprobability 1/k and eah 0-bit with probability 1/(|E| − k).Using the modi�ed mutation operators, the probability ofa spei� element exhange for bases inreases from Θ(1/|E|2)to Θ(r(E)−1(|E|−r(E))−1). Therefore, the bound of Theo-rem 3.7 an be replaed by O(r(E)|E|(log r(E)+log wmax)+
|E| log |E|). In the ase of Theorem 3.8 we obtain the bound
O(r(E)|E|(log |E| + log wmax)).The expeted number of generations an be further re-dued by using parallel versions of (1+1) EA and RLS thatprodue several o�spring in eah iteration. The (1+λ) EAand λ-PRLS algorithm produe independently λ o�springfrom the single individual of the urrent population. Theseletion proedure selets an individual with the smallest�tness value among the parent and its o�spring. In theproofs of Theorem 3.7 and Theorem 3.8 the probability ofa good step is O(r(E)/|E|2). Choosing λ := ⌈|E|2/r(E)⌉,this probability is inreased to a positive onstant. As be-fore, the expeted number of good steps is bounded by
O(r(E)(log r(E)+log wmax)) and O(r(E)(log |E|+log wmax)),respetively. This leads to the following result.Theorem 3.9. The expeted number of generations until
λ-PRLS or (1+λ) EA with λ := ⌈|E|2/r(E)⌉ hildren on-struts a minimum weight basis is bounded by
O(r(E) log wmax + |E| log |E|).Using the modi�ed mutation operator mentioned above,the probability of a good step redues to O(1/|E|) and we

obtain the same bound on the expeted number of genera-tions as in Theorem 3.9 already for λ := |E|.Neumann andWegener [18℄ also onsider multi-objetiveoptimization tehniques for the (single-objetive) minimumspanning tree problem. They study the behavior of twomulti-objetive evolutionary algorithms alled SEMO andGSEMO. The analysis an be arried over to the minimumweight basis problem for matroids and results in a boundof O(r(E)|E|(r(E) + log |E| + log wmax)) on the number ofgenerations.
4. MATROID INTERSECTIONThe results presented in this setion are motivated bythe results for the maximum mathing problem in [8, 9℄.We onsider the matroid intersetion problem whih is de-�ned as follows. Given two matroids M1 = (E, F1) and
M2 = (E, F2) on the same ground set E by their indepen-dene orales, ompute a set X ∈ F1 ∩ F2 suh that |X|is maximum. Let OPT denote suh an optimal element of
F1 ∩F2. The well-known matroid intersetion algorithm byEdmonds [3, 14℄ starts with X := ∅. In eah iteration, itsearhes a shortest SX -TX-path in the auxiliary graph GX .This so-alled augmenting path gives rise to X ′ ∈ F1 ∩ F2with |X ′| = |X|+1. The algorithm terminates if there is noaugmenting path.The auxiliary graph GX for X ∈ F1 ∩ F2 is de�ned asfollows. Its node set is E, the edges are given by AX ∪ BXwith AX := {(x, y) | y ∈ E \ X, x ∈ C1(X, y) \ {y}} and
BX := {(y, x) | y ∈ E \ X, x ∈ C2(X, y) \ {y}}. We set
SX := {y ∈ E \ X |X ∪ {y} ∈ F1} and TX := {y ∈ E \
X |X ∪ {y} ∈ F2}.Let the node sequene y0, x1, y1, . . . , xn, yn denote anyshortest SX -TX-path and de�ne X ′ := X \ {x1, . . . , xn} ∪
{y0, y1, . . . , yn}. Then this path is an augmenting path, i.e.,
X ′ ∈ F1 ∪ F2 and |X ′| = |X| + 1. In the EA setting, suhan augmentation step orresponds to simultaneously �ip-ping exatly the elements orresponding to the nodes of theaugmenting path.The above algorithm solves the matroid intersetion prob-lem in O(|E|3θ) time, where θ is the maximum omplexityof both independene orales. Faster matroid intersetionalgorithms are due to Cunningham [2℄ and Gabow andXu [6℄.We study the performane of evolutionary algorithms forthe matroid intersetion problem. We assume that we aregiven rank orales r1 and r2 that ompute for any set X ⊆ Eits rank with respet to M1 and M2, respetively. Again, weonsider the RLS and (1+1) EA algorithm. We onsider the�tness funtion

f(s) := −Φ(s) · |E| + |E(s)| ,where Φ(s) := 2|E(s)|−r1(E(s))−r2(E(s)). The expressionis dominated by Φ(s), whih measures the infeasibility of
E(s). If E(s) is a ommon independent set, this �rst termvanishes and the �tness of s equals the ardinality of E(s).A more preise way to measure the infeasibility of E(s)is to replae Φ(s) by Ψ(s) := min{|X||X ⊆ E, E(s) \ X ∈
F1∩F2}|. However, Ψ(s) annot be easily omputed. Hene,we resort to Φ(s). Note that 1

2
Φ(s) ≤ Ψ(s) ≤ Φ(s) ≤ 2|E|holds for all s ∈ {0, 1}|E|.First, we onsider the phase until a ommon independentset has been onstruted. Note that the empty set is a trivial



ommon independent set. Hene, the �rst phase an also beskipped entirely.Proposition 4.1. The expeted number of generationsuntil RLS or (1+1) EA working on the �tness funtion fonstruts a ommon independent set is bounded by
O(|E| log |E|).Proof. Suppose E(s) 6∈ F1 ∩ F2 holds for the initialsearh point s. The �tness funtion f is de�ned in suha way that the infeasibility Φ(s) never inreases. There areat least 1

2
Φ(s) elements in E(s) that lead to a derease ofthe infeasibility Φ(s). The probability that a step dereasesthe infeasibility Φ(s) is at least 1

2
· Φ(s)

2|E|
for RLS and at least

1
2e

· Φ(s)
2|E|

for (1+1) EA. The last probability is a lower boundfor (1 − |E|−1)|E\E(s)| · (1 − (1 − |E|−1)Φ(s)/2), whih de-notes the probability that the omplement of E(s) remains�xed and at least one of 1
2
Φ(s) infeasible elements is removedfrom E(s). Hene, the expeted number of generations until

s desribes an element in F1 ∩F2 is bounded from above by
Φ(s)
X

i=1

4e|E|

i
= O(|E| log |E|) .This onludes the proof.Next, we onsider the searh proess after having found aommon independent set X ∈ F1 ∩ F2. We show that thelength of a shortest SX -TX-path in GX an be bounded interms of |X| and |OPT |.Proposition 4.2. Let ε > 0 and X ∈ F1 ∩ F2 suh that

|X| < (1 − ε)|OPT |. There exists an SX -TX -path in GXwith length at most 2⌈1/ε⌉ − 2.Proof. It was shown by Cunningham [2℄ that GX on-tains k := |OPT | − |X| disjoint SX -TX-paths. Hene, thereexists an SX -TX-path with length at most 2⌊|X|/k⌋. Sine
|X| < (1−ε) |OPT |, we have |X|/k < (1−ε)/ε < 1/ε. Thus,the length of this path is bounded by 2⌈1/ε⌉ − 2.The bound on the length of an augmenting path allowsus to lower bound the probability that RLS or (1+1) EA�nds suh an augmenting path. These bounds lead to upperbounds on the expeted number of generations until |E(s)|is inreased, and �nally, until an (1 − ε)-approximation isonstruted.Theorem 4.3. For ε > 0, the expeted number of genera-tions until RLS or (1+1) EA working on the �tness funtion
f onstruts an (1−ε)-approximation of a maximum elementof F1 ∩ F2 is bounded by O(|E|2⌈1/ε⌉).Proof. By Proposition 4.1, it su�es to onsider thesearh proess after having found a searh point s with
E(s) ∈ F1 ∩ F2. The �tness funtions f is designed suhthat only steps leading to searh points s′ desribing om-mon independent sets of at least the same ardinality as sare aepted. Assume that |E(s)| < (1 − ε)|OPT |.By Proposition 4.2, there exists an augmenting path in
GE(s) of length at most l := 2⌈1/ε⌉ − 2. The (1+1) EA�ips exatly the l + 1 elements orresponding to the nodesof this path with probability Ω(|E|−l−1). The RLS algo-rithm needs l/2 2-bit �ips shortening the augmenting pathand a �nal 1-bit �ip to inrease |E(s)|. The probability that

this happens within the next l/2 + 1 steps is bounded frombelow by Ω((|E|−2)l/2 · |E|−1) = Ω(|E|−l−1). Hene, the ex-peted number of generations to improve |E(s)| is boundedby O(|E|l+1) for (1+1) EA and by O(l · |E|l+1) for RLS. Amore areful analysis for RLS yields the bound O(|E|l+1)(see [8, 9℄). Sine |OPT | ≤ |E|, the expeted number ofgenerations until RLS or (1+1) EA onstruts an (1 − ε)-approximation of a maximum element of F1∩F2 is boundedby O(|E| log |E|) + O(|E|) · O(|E|l+1) = O(|E|2⌈1/ε⌉).Giel and Wegener [8, 9℄ have shown that RLS and(1+1) EA require exponential optimization time for er-tain bipartite maximummathing problems. Sine bipartitemathing is a speial ase of matroid intersetion, we knowthat the matroid intersetion problem annot be solved byRLS or (1+1) EA in polynomial time.
5. WEIGHTED MATROID INTERSECTIONIn the weighted matroid intersetion problem we addition-ally onsider a weight funtion w : E → N whih assignsa non-negative weight w(e) to eah element e ∈ E of theground set. The task is to ompute a ommon independentset X ∈ F1 ∩ F2 suh that its weight w(X) :=

P

e∈X w(e)is maximum.Similar to the unweighted ase we onsider the �tnessfuntion
f(s) := −Φ(s) · wub +

X

e∈E(s)

w(e) ,where wub := |E| ·wmax is an upper bound on the weight ofany subset of E.Note that the RLS algorithm is not suited for the weightedmatroid intersetion problem sine, in general, simultaneous�ips of more than two bits are required. In the unweightedase, a long augmenting path an be broken into a series of2-bit �ips maintaining the �tness value and one �nal 1-bit�ip. In the weighted ase, there are simple examples of pathsof length �ve where suh a deomposition into a sequene of2-bit �ips with non-negative di�erene of the �tness valuedoes not exist.Although bit �ips of at most two bits are not su�ient inthe weighted ase, it is possible to obtain an 1
2
-approximationusing only bit �ips of at most three bits. We restrit our-selves in the following to this speial setting and analyze theexpeted number of generations to obtain an 1
2
-approximation.Proposition 5.1. Let s be a searh point suh that its�tness value f(s) annot be improved by �ipping at mostthree bits. Then w(s) ≥ 1

2
wOPT holds.Proof. De�ne A := OPT and B := E(s). Sine the�tness value f(s) annot be improved by �ipping one or twobits of s, we have C1(B, a) 6= ∅ and C2(B,a) 6= ∅ for all

a ∈ A \ B. De�ne X := A \ B = {x1, . . . xk}.By Proposition 3.3, there exist sets Y ′ = {y′
1, . . . , y

′
k} ⊆

B \ A and Y ′′ = {y′′
1 , . . . , y′′

k} ⊆ B \ A suh that y′
i ∈

C1(B,xi) and y′′
i ∈ C2(B, xi) for 1 ≤ i ≤ k. Sine the�tness value f(s) annot be improved by �ipping at mostthree bits of s, we have w(xi) ≤ w(y′

i)+w(y′′
i ) for 1 ≤ i ≤ k.Summing up these inequalities yield w(A \ B) = w(X) ≤

w(Y ′) + w(Y ′′) ≤ 2w(B \ A). Hene, w(s) ≥ 1
2
wOPTholds.



In order to analyze the expeted number of generationsuntil an 1
2
-approximate solution is found we prove that thereexists at least one bit �ip with a ertain weight inrease.Proposition 5.2. Let s be a searh point suh that w(s) ≤

( 1
2
− ε) wOPT holds for some ε > 0. Then there exists anaepted bit �ip involving at most three bits with a weightinrease of at least 2ε

|E|
wOPT .Proof. De�ne A := OPT , B := E(s) and X := A \ B =

{x1, . . . , xk}. We use the index sets I ′ and I ′′ to denotethose elements of X whose addition to B auses a yle inthe matroid M1 and M2, respetively.
I ′ := {i | 1 ≤ i ≤ k, C1(B, xi) 6= ∅}

I ′′ := {i | 1 ≤ i ≤ k, C2(B, xi) 6= ∅}By Proposition 3.3, there exist a set Y ′ = {y′
i | i ∈ I ′} ⊆

B \ A suh that y′
i ∈ C1(B, xi) for all i ∈ I ′. Likewise,there exists a set Y ′′ = {y′′

i | i ∈ I ′′} ⊆ B \ A suh that
y′′

i ∈ C2(B, xi) for all i ∈ I ′′. We de�ne the weights wi, w′
iand w′′

i for 1 ≤ i ≤ k as follows:
wi := w(xi)

w′
i :=

(

w(y′
i) if i ∈ I ′

0 otherwise
w′′

i :=

(

w(y′′
i ) if i ∈ I ′′

0 otherwiseBy assumption, w(B) ≤ ( 1
2
−ε)w(A) holds. Hene, we have

w(A\B)−w(B\A) ≥ ( 1
2
+ε)w(A). Sine w(B\A) ≤ w(B) ≤

( 1
2
−ε)w(A), it follows that w(A\B)−2w(B\A) ≥ 2ε w(A).We have

k
X

i=1

wi − w′
i − w′′

i = w(X) − w(Y ′) − w(Y ′′)

≥ w(A \ B) − 2w(B \ A) ≥ 2ε w(A)Hene, there exists an i ∈ {1, . . . , k} suh that wi − w′
i −

w′′
i ≥ 2ε

k
w(A). Consider the bit �ip that adds the element

xi and removes the elements y′
i and y′′

i if i ∈ I ′ and i ∈
I ′′, respetively (note that y′

i and y′′
i might be idential).This bit �ip involves at most three bits and has a weightinrease of at least 2ε

|E|
w(A). By onstrution, the resultingbit string enodes a ommon independent set and the bit�ip is aepted.Now we an prove our main result, the expeted number ofgenerations for an 1

2
-approximation of the weighted matroidintersetion problem.Theorem 5.3. The expeted number of generations until

(1 + 1) EA working on the �tness funtion f onstruts an
1
2
-approximation of a maximum weight element of F1∩F2 isbounded by O(|E|4(log r+log wmax)), where r := min{r1(E),

r2(E)}.Proof. By Proposition 4.1 (whih also holds for theweighted ase), it su�es to onsider the searh proess af-ter having found a searh point s with E(s) ∈ F1 ∩F2. The�tness funtion f is designed suh that only steps leading tosearh points s′ that desribe ommon independent sets ofat least the same weight as s are aepted.

Now onsider any searh point s with E(s) ∈ F1 ∩F2 and
w(s) < 1

2
wOPT . De�ne ε := 1

2
− w(s)

wOP T
, i.e., w(s) = ( 1

2
−

ε)wOPT holds. By Proposition 5.2 there exists an aeptedbit �ip involving at most three bits with a weight inrease ofat least 2ε
|E|

wOPT . Suh a step is alled a good step. A goodstep dereases the di�erene ε · wOPT between the weight
w(s) of the urrent searh point s and 1

2
wOPT by a fatornot larger than 1 − 2/|E|. Hene, after N good steps, thedi�erene between w(s) and 1

2
wOPT is bounded from aboveby (1 − 2/|E|)N · ( 1

2
wOPT − w(s)). Sine wOPT ≤ r · wmaxand w(s) ≥ 0, we obtain the upper bound (1− 2/|E|)N · D,where D := 1

2
r · wmax.If N := ⌈(ln 2) · |E|

2
· log(3D)⌉, this bound is at most 1

3
.The di�erene is half-integral whih implies that we haveatually reahed an 1

2
-approximation after at most N goodsteps. The probability of a good step is bounded from belowby Ω(|E|−3). Hene, the expeted number of generations for

N good steps is bounded by
O(N |E|3) = O(|E|4(log r + log wmax)) .This onludes the proof.Consider the following modi�ation of the RLS algorithm.Choose b ∈ {0, 1, 2} randomly. If b < 2 proeed as before.Otherwise, hoose (i, j, k) ∈ {(a, b, c) | 1 ≤ a < b < c ≤ |E|}randomly and �ip the i-th, j-th and k-th bit of s. We allthis algorithm RLS3.Sine we restrit ourselves to bit �ips involving at mostthree bits, all good steps that are aepted by the (1+1) EAan also be ahieved using RLS3. Moreover, the proba-bility of a partiular bit �ip is again bounded from belowby Ω(|E|−3). Hene, Theorem 5.3 does not only hold for(1+1) EA, but also for RLS3.

6. INTERSECTION OF THREE OR MORE
MATROIDSFurthermore, the result of Theorem 5.3 an be easily gen-eralized to the intersetion of p matroids Mi = (E,Fi),

1 ≤ i ≤ p. The task is to ompute an independent set
X ∈

T p
i=1 Fi with maximum weight. This problem is NP-hard for p ≥ 3, as �nding a Hamiltonian iruit in a diretedgraph is a speial ase; see [13℄.Similar to the previous ase of p = 2, there are situationsin whih simultaneous �ips of at least p+1 bits are required.Therefore, we do not onsider the RLS algorithm in thissetion. A modi�ation of the RLS algorithm similar to thatdesribed in the last paragraphs of the preeding setion isstill possible though.The de�nition of the funtion Φ(s) is adjusted in theobvious way. The bound of Proposition 4.1 inreases to

O(p|E| log |E|). The results of Proposition 5.2 arry overto the intersetion of p matroids, although the ahieved ap-proximation ratio is worse.Proposition 6.1. Let s be a searh point suh that w(s) ≤
( 1

p
− ε) wOPT holds for some ε > 0. Then there exists anaepted bit �ip involving at most p + 1 bits with a weightinrease of at least p ε

|E|
wOPT .The lower bound for the probability of piking a partiu-lar bit �ip of at most p+1 bits redues to Ω(|E|−p−1). Thisobservation leads to the following generalization of Theo-rem 5.3.



Theorem 6.2. Given p matroids Mi = (E, Fi), 1 ≤ i ≤
p, the expeted number of generations until (1+1) EA work-ing on the �tness funtion f onstruts an 1

p
-approximationof a maximum weight element of T

1≤i≤p Fi is bounded by
O(|E|p+2(log r +log wmax)), where r := min{ri(E) | 1 ≤ i ≤
p}.Similar to the minimum weight basis problem we anuse parallel versions of (1+1) EA and RLS to redue thenumber of generations. Choosing the number of o�springper generation as λ := |E|p+1 improves the probability ofa good step from Ω(|E|−p−1) to a positive onstant. Asbefore, the expeted number of good steps is bounded by
O(|E|(log r + log wmax)). This leads to the following result.Corollary 6.3. Given p matroids Mi = (E, Fi), 1 ≤
i ≤ p, the expeted number of generations until (1+λ) EAwith λ := |E|p+1 hildren working on the �tness funtion fonstruts an 1

p
-approximation of a maximum weight ele-ment of T

1≤i≤p Fi is bounded by O(|E|(log r + log wmax)).
7. CONCLUSIONWe have analyzed the performane of (1+1) EA and RLSon a very general lass of ombinatorial optimization prob-lems ranging from very simple problems that an be solvedoptimally by the greedy method up to NP-hard problems.Our results provide an indiation of the enormous power ofevolutionary algorithms from a theoretial point of view. Itturns out that the very general and abstrat struture ofmatroid optimization problems su�es to lead evolutionaryalgorithms into promising diretions and to �nally obtainoptimal or at least provably good solutions after only poly-nomially many iterations.Aknowledgements. The authors thank Alexander Souzafor helpful disussions on the topi of this paper.
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