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Abstract We analyze the performance of evolutionary algorithms on var-
ious matroid optimization problems that encompass a vast number of ef-
ficiently solvable as well as NP-hard combinatorial optimization problems
(including many well-known examples such as minimum spanning tree and
maximum bipartite matching). We obtain very promising bounds on the ex-
pected running time and quality of the computed solution. Our results estab-
lish a better theoretical understanding of why randomized search heuristics
yield empirically good results for many real-world optimization problems.
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1 Introduction

Motivation. While evolutionary algorithms are known to work (empiri-
cally) well for many optimization problems in practice, a satisfying and
rigorous mathematical analysis of their performance is one of the main chal-
lenges in the area of genetic and evolutionary computing. Interesting results
have been obtained for some important, isolated optimization problems but
a general theoretical explanation of the behavior of evolutionary algorithms
is still missing. The aim of this article is to make progress in this direction.
We study the performance of evolutionary algorithms on a very general
class of combinatorial optimization problems and obtain promising results
on the running time and quality of the computed solutions. A summary of
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problem
efficient algorithm

known

exp. # iterations of
(1+1) EA and RLS

lower bound on
exp. # iterations of
(1+1) EA and RLS

minimum
weight basis O(|E| log |E| + |E|Θ) O(|E|2(log r(E) + log wmax)) Ω(|E|2 log r(E)) [25]

unweighted
matroid

intersection
O(|E| r(E)1.5Θ) [3]

(1− ε)-approximation in

O(|E|2d1/εe)
exponential [14]

weighted
matroid

intersection

O(|E| r(E)(r(E)Θ +
log |E|)) [31]

1/2-approximation in
O(|E|4(log |E| + log wmax)) exponential [14]

intersection
of p ≥ 3
matroids

NP-hard [13]
1/p-approximation in

O(|E|p+2(log |E| + log wmax))
exponential [14]

Table 1 A summary of results on various matroid optimization problems. The
problems are described in the first column. The second column gives the running
time of known efficient algorithms, where Θ is the (maximum) time complexity of
the independence oracle(s). The third column describes the results for (1+1) EA
and (modifications of) RLS obtained in this article. The last column gives lower
bounds on the running time of (1+1)EA and RLS for obtaining an optimal solu-
tion. Note that the numbers in the two last columns denote the expected number
of iterations rather than the total runtime.

our results together with an overview of the complexity of the considered
optimization problems can be found in Table 1.
Independence Systems and Matroids. Matroid theory provides a frame-
work in which a substantial class of problems in combinatorial optimization
can be studied from a unified perspective. Matroids form a special class
of independence systems that are given by a finite set E and a family of
subsets F ⊆ 2E such that F is closed under subsets. The subsets contained
in F are called independent and a maximal independent subset is called a
basis of the independence system. A precise definition of matroids along
with some important classical results is given in Section 2.

Many combinatorial optimization problems can be formulated as follows:
Given an independence system on a weighted set E, find a basis of minimum
(or maximum) weight. We mention as an example the problem of finding a
stable set of maximum weight in a given graph with weights on the nodes
(here, the underlying independence system is not a matroid).

A famous result by Rado [27], Gale [12], and Edmonds [7] states that
an independence system is a matroid if and only if the greedy algorithm
computes a minimum weight basis for arbitrary weights on the elements
of E. This algorithmic characterization of matroids highlights their relevance
in the area of efficient algorithms and combinatorial optimization.
Examples of Matroids and First Results. Graphic matroids are an
important example of matroids where E is the edge set of a graph G =
(V,E) and a subset of edges is independent if it does not contain a cir-
cuit. If the given graph G is connected, the problem of finding a minimum
weight basis of the corresponding graphic matroid is the minimum span-
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ning tree problem. In the context of evolutionary algorithms, Raidl and
Julstrom [28] analyze different encodings for the minimum spanning tree
problem and propose to work with so-called edge sets. Neumann and We-
gener [25] study evolutionary algorithms for the minimum spanning tree
problem. They prove that two specific evolutionary algorithms, (1+1) EA
and RLS, compute a minimum spanning tree in expected polynomial time,
i.e., O(|E|2(log |V |+ log wmax)), where wmax denotes the maximum weight
of any edge; moreover, they establish a lower bound of Ω(|E|2 log |V |). In
Section 3 we generalize this result to arbitrary matroids (see also Table 1).
After establishing a crucial property of the problem our analysis follows
that of [25].

Another important example of matroids are linear matroids where E is
a set of vectors and a subset is independent if the vectors contained in it are
linearly independent. Linear matroids occur, for example, in the minimum
cycle basis problem where the task is to find a minimum weight basis of the
cycle space of a given graph with weights on the edges. This problem is an
important building block in various real-world optimization problems such
as, for example, in electrical networks, structural engineering, chemistry and
biochemistry, and in periodic timetabling; see, e.g., [23] for details.

Matroid Intersection. Matroids have even more algorithmic power than
just that of the greedy method. Edmonds [6] (see also [22]) observed that
also the (weighted) matroid intersection problem can be solved efficiently.
That is, a maximum weight common independent set in two matroids can
be found in strongly polynomial time. The matroid intersection problem has
applications in many settings such as, for example, edge connectivity [10],
survivable network design [2], constrained [18] as well as degree-bounded [16]
minimum spanning trees, and multicast network codes [17].

One of the most prominent examples of an optimization problem that
can be formulated as a matroid intersection problem is the maximum weight
matching problem in bipartite graphs. Giel and Wegener [14,15] ana-
lyze evolutionary algorithms for the maximum matching problem (with unit
weights). They show that (1+1)EA and RLS are (randomized) polynomial-
time approximation schemes with an expected runtime of O(|E|2d1/εe); more-
over they construct a class of bipartite graphs for which these algorithms
need an exponential expected running time until they find an optimal so-
lution. Motivated by these results we prove in Section 4 that (1+1) EA
and RLS are polynomial-time approximation schemes for the matroid in-
tersection problem with unit weights (see also Table 1). Again, establishing
a crucial property of the problem structure allows to extend the previous
analysis for the special case to our problem.

Our result for the unweighted matroid intersection problem cannot be
generalized easily to the weighted case and also from the viewpoint of ef-
ficient algorithms it is known that the weighted version of the problem is
somewhat harder than the unweighted problem. In Section 5 we prove that
(1+1)EA and a slightly modified version of RLS are 1

2 -approximation algo-
rithms for the weighted matroid intersection problem (see also Table 1). The
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techniques used to obtain this result differ from those for the unweighted
case and we are not aware of previous work for (other) special cases.

NP-Hard Problems. The problem of finding a maximum-size common
independent set in three or more matroids is NP-hard as finding a Hamilto-
nian circuit in a directed graph is a special case [19]. On the other hand it is
known that any independence system can be represented as an intersection
of finitely many matroids and a vast number of combinatorial optimization
problem falls into this category. In Section 6 we prove that (1+1) EA and
(an appropriately modified version of) RLS are 1

p -approximation algorithms
for the NP-hard problem to find a maximum-weight independent set in the
intersection of p ≥ 3 matroids (see also Table 1). This result is a generaliza-
tion of our 1

2 -approximation for the weighted intersection of two matroids.
Note that the approximation ratio of 1

p is the same as that of the greedy
algorithm [20,21].

More Results from the Literature. In the following we mention some
further related results from the literature. Wegener [33,34] discusses ran-
domized search heuristics as an alternative to exact algorithms in the con-
text of discrete optimization problems and gives an overview of known re-
sults. Droste, Jansen and Wegener [5] study the behavior of (1+1)EA
on pseudo-boolean functions. Sorting and shortest path problems are con-
sidered by Scharnow, Tinnefeld, and Wegener [30].

2 Preliminaries

Evolutionary algorithms are a class of randomized search heuristics that are
inspired by biological evolution. Informally, their basic structure can be ex-
plained as follows. An element of the search space is referred to as individual
and a set of such individuals is called population. The quality of an individual
is measured by a fitness function. Following the idea of survival of the fittest,
evolutionary algorithms try to maximize the fitness of the individuals in the
population in an iterative way. Such an iteration is called generation. To this
end, some individuals (parents) of the current population are chosen as seed
for the next generation. By applying recombination and/or mutation opera-
tors, new individuals (offspring) are generated. The recombination operator
is applied to two individuals and creates a new individual by recombining
the information of the parents. The mutation operator is applied to one
individual and creates one new individual. The offspring compete with the
individuals of the current generation for a place in the population of the
next generation. See [1] or [8] for a detailed introduction into the field of
evolutionary algorithms.

We study the behavior of two very simple evolutionary algorithms, namely
(1+1)EA and randomized local search (RLS), which is sometimes also called
local (1+1)EA. These algorithms play an important role since their simplic-
ity allows a theoretical analysis of their behavior. On the other hand, they
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are complex enough to solve important combinatorial optimization prob-
lems. The population of both algorithms consists of exactly one individual,
and there is no recombination operator. Almost all theoretical results for
combinatorial optimization problems consider evolutionary algorithms with-
out recombination operator (also called crossover). This is due to the fact
that proofs become much more difficult if such an operator is introduced.
It was an open question whether recombination is provably helpful for non-
artificial problems. This question has recently been answered positively for
the all-pairs shortest path problem [4] and the Ising model [9,32].

For both algorithms, (1+1)EA and RLS, the search space consists of all
bitstrings of a fixed length. Initially, a bitstring s ∈ {0, 1}n is chosen ran-
domly (whenever we speak of randomness, we mean uniform randomness).
The mutation operators of (1+1)EA and RLS are defined as follows:

(1+1) EA: Obtain the bitstring s′ by flipping each bit of s indepen-
dently of the other bits with probability 1/n.

RLS: Choose b ∈ {0, 1} randomly. If b = 0, choose i ∈ {1, . . . , n}
randomly and obtain s′ by flipping the i-th bit of s. If b = 1, choose (i, j) ∈
{(k, l) | 1 ≤ k < l ≤ n} randomly and obtain s′ by flipping the i-th and
j-th bit of s.

Note that the mutation operator of RLS is capable of flipping two bits
simultaneously. We shall see later that it is crucial that the neighborhood of
a given search point contains other search points with a Hamming distance
of two. The current search point s is replaced by s′ if the fitness value
of s′ is better than or equal to that of s. Note that “better” corresponds
to either “smaller” or “larger”, depending on whether a minimization or
maximization problem is considered.

Both algorithms do not use any stopping criteria. For theoretical in-
vestigations it is common to consider the algorithms as infinite stochastic
processes and to consider the number of fitness evaluations as a measure of
the runtime. Note that in (1+1) EA and RLS there is exactly one fitness
evaluation per generation, thus the number of fitness evaluations equals the
number of generations. Hence, our goal is to bound the expected number
of generations (also called expected runtime) until the algorithms have dis-
covered a desired search point.

We shall now give the definition of matroids as well as some well-known
properties used in this article. See [22], [26], or [31], for a more detailed
discussion.

Definition 1 Let E be a finite set and F ⊆ 2E. The pair M = (E,F) is
called a matroid if

(i) ∅ ∈ F,
(ii) ∀X ⊆ Y ∈ F : X ∈ F, and
(iii) ∀X, Y ∈ F, |X| > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F.

The elements of F are called independent, the elements of 2E \ F are called
dependent. The maximal independent sets are called bases of M , the minimal
dependent sets are called circuits. For X ⊆ E, a maximal independent
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subset of X is called a basis of X. The rank r(X) of X is the maximal
cardinality of a basis of X, r(X) := max{|Y | | Y ⊆ X, Y ∈ F}.

Proposition 1 Let (E,F) be a matroid. Then
(i) for X ⊆ E, all bases of X have the same cardinality;
(ii) for all bases B1, B2 of M , x ∈ B1 \ B2 there exists y ∈ B2 \ B1 such

that (B1 \ {x}) ∪ {y} is a basis of M .

Proposition 2 Let (E,F) be a matroid and r(·) its rank function. Then
(i) r(∅) = 0,
(ii) ∀X ⊆ E : r(X) ≤ |X|,
(iii) ∀X ⊆ E : r(X) = |X| ⇔ X ∈ F,
(iv) ∀X, Y ⊆ E,X ⊆ Y : r(X) ≤ r(Y ).

For X ∈ F and y ∈ E such that X ∪ {y} 6∈ F, we use C(X, y) to denote
the unique circuit in X ∪ {y}. If X ∪ {y} ∈ F, we define C(X, y) := ∅.

Note that |F| might be exponential in |E|. Hence, |F| is usually not
given explicitly. Instead one usually assumes the existence of an appropri-
ate oracle. Such an oracle can be understood as a black box that reveals
some information about |F|. For example, an independence oracle decides
in constant time for a given set X ⊆ E whether X ∈ F holds. Here we
assume that the set F is implicitly given by a rank oracle which for any set
X ⊆ E computes its rank r(X) in constant time. Note that a rank oracle is
polynomially equivalent to an independence oracle [22].

3 Minimum Weight Basis

The results presented in this section generalize and are motivated by the
corresponding results for the minimum spanning tree problem in [25]. We
consider the following problem. Given a matroid M = (E,F) and a weight
function w : E → N, find a basis B ⊆ E of M of minimum weight. The
weight of a subset of E is defined as the sum of the weights of its elements.
The weight of an optimal solution is denoted by wOPT .

The search space equals S = {0, 1}|E|, where each position of the bit-
string corresponds to an element from E = {e1, . . . , e|E|}. A search point
s ∈ {0, 1}|E| corresponds to the subset E(s) := {ei ∈ E | si = 1, 1 ≤
i ≤ |E|} of E. We define the weight w(s) of a bitstring s as the weight of
the corresponding set E(s). In a similar way we define the rank r(s) of a
bitstring s as r(s) := r(E(s)).

We consider two fitness functions f and f ′. Let wmax denote the maxi-
mum weight of any element in E. Then wub := |E| ·wmax is an upper bound
on the weight of any subset of E. Let

f(s) := (r(E)− r(s)) · |E| · wub + (|E(s)| − r(E)) · wub +
∑

e∈E(s)

w(e)
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be the first fitness function which is to be minimized. The expression is
dominated by the first term which encodes the number r(E) − r(s) of ele-
ments that have to be added to E(s) to get a superset of a basis. If E(s) is
a superset of a basis, this term vanishes and the second term dominates the
expression. The factor |E(s)| − r(E) denotes the number of elements that
have to be removed from E(s) to get a basis of M . If E(s) is a basis of M ,
both the first and second term vanish and the fitness of s corresponds to
the weight of the elements in E(s).

The second term in the fitness function f explicitly penalizes circuits.
This is not necessary, since the removal of an element of a circuit leads to a
weight decrease by itself. Therefore, we also investigate the fitness function

f ′(s) := (r(E)− r(s)) · wub +
∑

e∈E(s)

w(e) .

Note that f ′(s) equals f(s) if s describes a spanning tree. We shall see that
the additional information concerning |E(s)| in the first fitness function f
allows us to obtain better bounds.

The remainder of this section is structured as follows. After a simple
inequality to bound probabilities we prove two propositions concerning the
expected number of generations until a superset of a basis and a basis have
been constructed. Then we present several propositions about basis transi-
tion properties which are needed to prove the main theorems of this section.

Proposition 3 Let α− 1 ≥ β ≥ 1 and γ ≥ 1. Then(
1− 1

α

)β

·
(

1−
(

1− 1
α

)γ)
≥ e−1 · γ

α + γ
.

Proof Since β ≤ α− 1, we get(
1− 1

α

)β

≥
(

1− 1
α

)α−1

≥ e−1 .

Since 1− x ≤ e−x for all x ∈ R, we have

1−
(

1− 1
α

)γ

≥ 1− e−
γ
α = 1− 1

eγ/α
.

Again, since ex ≥ 1 + x for all x ∈ R, we obtain

1− 1
eγ/α

≥ 1− 1
1 + γ/α

=
γ

α + γ
,

which concludes the proof.

Proposition 4 The expected number of generations until RLS or (1+1)EA
working on one of the fitness functions f or f ′ constructs a superset of a
basis of M is bounded by O(|E| log r(E)).
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Proof Suppose the initial search point s does not describe a superset of a
basis. Then r(s) < r(E) holds. Both fitness functions f and f ′ are defined
in such a way that the rank of E(s) will never decrease in accepted steps.
For each subset X ⊆ E, there are at least r(E)− r(X) elements of E whose
inclusion increases the rank of X by 1.

The probability that RLS performs a 1-bit flip is 1
2 and there are |E|

possible 1-bit flips. Therefore, for RLS, the probability that a step increases
the rank of E(s) is at least 1

2 ·
r(E)−r(s)

|E| . For (1+1)EA we consider the event
that r(s) elements of a fixed basis of E(s) remain unchanged and at least
one of r(E)− r(s) elements that enlarge this independent subset is flipped.
The probability of this event is given by(

1− |E|−1
)r(s) ·

(
1−

(
1− |E|−1

)r(E)−r(s)
)

,

which, by Proposition 3, can be lower bounded by 1
2e ·

r(E)−r(s)
|E| . Hence, the

expected number of generations until s describes a superset of some basis
is bounded from above by

r(E)−1∑
i=0

2e|E|
r(E)− i

= O(|E| log r(E)) .

This concludes the proof. �

Proposition 5 The expected number of generations until RLS or (1+1)EA
working on the fitness function f constructs a basis of M starting from a
superset of a basis is bounded by O(|E| log |E|).

Proof Suppose the initial search point s describes a proper superset of some
basis of M . Then |E(s)| > r(E) holds. The fitness function f is defined in
such a way that only supersets of bases are accepted, i.e., the rank of E(s)
does not change. Furthermore, the cardinality of E(s) never increases.

The probability that a step decreases the cardinality of E(s) while main-
taining a superset of a basis is at least 1

2 ·
|E(s)|−r(E)

|E| for RLS. For (1+1)EA
we consider the event that r(E) elements of a fixed basis of M contained
in E(s) remain unchanged and at least one of the remaining |E(s)| − r(E)
elements is flipped. The probability of this event is given by(

1− |E|−1
)r(E) ·

(
1−

(
1− |E|−1

)|E(s)|−r(E)
)

,

which, by Proposition 3, can be lower bounded by 1
2e ·

|E(s)|−r(E)
|E| . Hence, the

expected number of generations until s describes a basis of M is bounded
from above by

|E|∑
i=r(E)+1

2e|E|
i− r(E)

= O(|E| log |E|) .

This concludes the proof. �



Evolutionary Algorithms and Matroid Optimization Problems 9

We remark that Proposition 5 holds also for RLS and the fitness function
f ′, but not for (1+1) EA and f ′. Since RLS flips at most two bits per
step, an increase in |E(s)| implies an increasing weight. Consequently, steps
increasing |E(s)| are not accepted. This argument does not hold for the
(1+1) EA, which might exclude a heavy element and include two or more
light elements instead while maintaining a superset of a basis.

The following proposition will later turn out to be useful in order to
prove a bound on the number of steps needed to get from an arbitrary basis
to a minimum weight basis.

For a matroid M = (E,F) and two sets A,B ∈ F we define the graph
GA,B := (VA,B , EA,B), VA,B := A4B, and EA,B := {(a, b) | a ∈ A \B, b ∈
C(B, a) \A}.

Proposition 6 Given a matroid M = (E,F) and two sets A,B ∈ F such
that C(B, a) 6= ∅ for all a ∈ A \ B holds. The graph GA,B has a bipartite
matching covering A \B.

Proof Note that GA,B is a bipartite graph with bipartition VA,B = (A\B)∪̇
(B\A). For X ⊆ A\B define N(X) := {b ∈ B\A | ∃x ∈ X : (x, b) ∈ EA,B}.
We show |N(X)| ≥ |X| for all X ⊆ A \ B. Then the claim follows by the
classical Theorem of Hall (see, e.g., [22]).

Suppose there exists X ⊆ A \B with |N(X)| < |X|. By Definition 1(ii),
the sets X and N(X) are independent (and disjoint) since they are subsets
of A \ B and B \ A, respectively. Moreover, the sets X ∪̇ (A ∩ B) and
N(X) ∪̇ (A ∩ B) are independent as subsets of A and B, respectively, and
|N(X) ∪̇ (A ∩ B)| < |X ∪̇ (A ∩ B)| holds. Hence, by Definition 1, there
exists x ∈ (X ∪̇ (A ∩ B)) \ (N(X) ∪̇ (A ∩ B)) = X \ N(X) = X such that
N(X) ∪̇ (A ∩ B) ∪̇ {x} ∈ F. On the other hand, by the definition of N(·),
the set N(X) ∪̇ (A ∩B) ∪̇ {x} contains the cycle C(B, x). �

Proposition 7 Let s be a search point describing a non-minimum weight
basis B of M . Then there exists some k ∈ {1, . . . , r(E)} and k different
accepted 2-bit flips such that the average weight decrease of these flips is
(w(s)− wOPT )/k.

Proof Let B∗ denote a minimum weight basis of M and define k := |B∗\B|.
By applying Proposition 6 to B and B∗ we obtain an injective function
α : B∗ \ B → B \ B∗ such that α(e) ∈ C(B, e) for all e ∈ B∗ \ B. By
Proposition 1(i), all bases of a matroid have equal cardinality, hence, the
function α is a bijection.

By Proposition 1(ii), B∪{e}\{α(e)} is again a basis of M . Furthermore,
since B∗ is an optimal basis w(e) ≤ w(α(e)) holds for all e ∈ B∗ \B. Hence,
exchanging e and α(e) does not increase the total weight and the 2-bit flip
involving e and α(e) is accepted. All k 2-bit flips together change B into B∗

and the total weight decrease is w(s) − wOPT . Hence, the average weight
decrease is (w(s)− wOPT )/k. �
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The analysis performed later can be simplified if the parameter k in
Proposition 7 is independent of the search point s. This can be easily ac-
complished by allowing non-accepted 2-bit flips whose weight decrease is
defined as 0. We add r(E) − k non-accepted 2-bit flips to the k 2-bit flips
from Proposition 7.

Proposition 8 Let s be a search point describing a basis B of M . Then
there exists a set of r(E) 2-bit flips such that the average weight decrease of
these flips is (w(s)− wOPT )/r(E).

Since Proposition 5 does not hold for the fitness function f ′ in combina-
tion with (1+1)EA, we need a result similar to Proposition 8 for supersets
of a basis. Since we start from supersets of a basis, we need to allow also
1-bit flips to reach a basis.

Proposition 9 Let s be a search point describing a superset of a basis. Then
there exists a set of |E| − r(E) 1-bit flips and a set of r(E) 2-bit flips such
that the average weight decrease is (w(s)− wOPT )/|E|.

Proof Let B′ ⊆ E(s) denote a basis of M and s′ the corresponding search
point. Consider the set of |E(s)| − r(E) 1-bit flips corresponding to the
elements in E(s)\B′. Their removal from E(s) does not change the rank of
E(s), hence the 1-bit flips are accepted. We obtain the basis B′ and apply
Proposition 8. Alltogether, we obtain a weight decrease of w(s)−wOPT and
performed |E(s)| flips.

Similar to Proposition 8 we allow non-accepted 1-bit flips whose weight
decrease is defined as 0. By adding |E| − |E(s)| non-accepted 1-bit flips we
obtain the claimed result. �

Theorem 1 The expected number of generations until RLS or (1+1) EA
working on the fitness function f constructs a minimum weight basis is
bounded by O(|E|2(log r(E) + log wmax)).

Proof By Propositions 4 and 5, it is sufficient to consider the search process
after having found a search point s describing a basis. Then, by Proposi-
tion 8, there exists a set of r(E) 2-bit flips whose average weight decrease is
(w(s)−wOPT )/r(E). The choice of such a 2-bit flip is called a good step. The
probability of performing such a good step equals Θ(r(E)/|E|2) and each of
the good steps is chosen with the same probability. A good step decreases
the difference between the weight of the current search point s and wOPT on
average by a factor of 1/r(E). This holds independently of previous good
steps. Hence, after N good steps, the expected difference between w(s) and
wOPT is given by (1−1/r(E))N ·(w(s)−wOPT ). Since w(s) ≤ r(E)·wmax and
wOPT ≥ 0, we obtain the upper bound (1−1/r(E))N ·D on the expected dif-
ference between w(s) and wOPT after N good steps, where D := r(E)·wmax.

If N := d(ln 2) · r(E) · (log 2D)e, this bound is at most 1
2 . Since the

difference is not negative, by Markov’s inequality, the probability that the
bound is less than 1 is at least 1/2. The difference is an integer implying
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that the probability of having found a minimum weight basis is at least 1/2.
Therefore, the expected number of good steps until a minimum weight basis
is found is bounded by 2N = O(r(E) log D) = O(r(E)(log r(E)+log wmax)).

By our construction, there are always exactly r(E) good steps. There-
fore, the probability of a good step does not depend on the current search
point. Hence, the expected number of generations until l good steps have
been made equals Θ(l|E|2/r(E)). Altogether, the expected number of iter-
ations is bounded by

O(N |E|2/r(E)) = O(|E|2(log r(E) + log wmax)) .

This concludes the proof. �

A slightly worse bound can be shown for the fitness function f ′ by ap-
plying Proposition 9 instead of Proposition 8.

Theorem 2 The expected number of generations until RLS or (1+1) EA
working on the fitness function f ′ constructs a minimum weight basis is
bounded by O(|E|2(log |E|+ log wmax)).

Proof By Proposition 4, it is sufficient to consider the search process after
having found a search point s describing a superset of a basis. Then, by
Proposition 9, for each step there exists a set of |E| − r(E) 1-bit flips and
a set of r(E) 2-bit flips such that the total weight decrease is w(s)−wOPT .
The choice of such a bit flip is called a good step. If the total weight decrease
of the 1-bit flips is larger than the total weight decrease of the 2-bit flips, the
step is called a 1-step. Otherwise, it is called a 2-step. Note that the notion
of a 2-step does not imply that we actually perform a 2-bit flip, similarly
for 1-steps and 1-bit flips.

Consider the sequence of all steps until a minimum weight basis is
reached. Suppose that at least half of the required steps are 2-steps. Con-
sider only these 2-steps. Since there are r(E) good 2-bit flips, the probabil-
ity of a good 2-bit flip equals Θ(r(E)/|E|2). The expected weight decrease
of such a 2-bit flip in a 2-step is at least 1

2 (w(s) − wOPT )/r(E). Thus, a
good 2-bit flip in a 2-step decreases the difference between the weight of
the current search point s and wOPT on average by a factor not larger
than 1 − 1/(2r(E)). Hence, we can adapt the proof of Theorem 1 with
N ′ := d(ln 2) · 2r(E) · (log 2D′)e, D′ := |E| · wmax and obtain the bound
O(N ′|E|2/r(E)) for the expected number of 2-steps. Since the majority of
all steps are 2-steps, the claimed result follows.

Now suppose that at least half of the required steps are 1-steps and
consider only these 1-steps. Since there are k := |E| − r(E) good 1-bit flips,
the probability of a good 1-bit flip equals Θ(k/|E|). The expected weight
decrease of such a 1-bit flip in a 1-step is at least 1

2 (w(s)−wOPT )/k. Thus,
a good 1-bit flip in a 1-step decreases the difference between the weight of
the current search point s and wOPT on average by a factor not larger than
1 − 1/(2k). Again, we can apply the proof technique of Theorem 1 where
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N ′′ := d2 · (ln 2) · k · (log 2D′)e = O(|E|(log |E| + log wmax)) takes the role
of N . We obtain the upper bound

O(N ′′|E|/k) = O(|E|(log |E|+ log wmax))

for the expected number of 1-steps. Since the majority of all steps are 1-
steps, the total number of steps is of the same order, which is even smaller
than the proposed bound. �

Neumann and Wegener [25] show a lower bound of Ω(|E|2 log r(E))
for a special class of instances of the minimum spanning tree problem.
Hence, Ω(|E|2 log r(E)) is also a lower bound for the minimum weight basis
problem.

We briefly want to mention the benefits of more problem-specific mu-
tation operators. After having found a basis of a matroid, we are only in-
terested in offspring with the same cardinality. The probability of such an
offspring can be increased using the following two mutation operators: If
RLS flips two bits, it chooses randomly a 0-bit and randomly a 1-bit. If s
contains k 1-bits, (1+1) EA flips each 1-bit with probability 1/k and each
0-bit with probability 1/(|E| − k).

Using the modified mutation operators, the probability of a specific
element exchange for bases increases from Θ(1/|E|2) to Θ(r(E)−1(|E| −
r(E))−1). Therefore, the bound of Theorem 1 can be replaced by O(r(E)|E|·
(log r(E) + log wmax) + |E| log |E|). In the case of Theorem 2 we obtain the
bound O(r(E)|E|(log |E|+ log wmax)).

The expected number of generations can be further reduced by using
parallel versions of (1+1)EA and RLS. The term parallel refers to the fact
that in each iteration (1+λ)EA and λ-PRLS (λ-parallel RLS) independently
produce λ offspring from the currently considered individual. The selection
procedure selects an individual with the smallest fitness value among the
parent and its offspring. In the proofs of Theorem 1 and Theorem 2 the
probability of a good step is O(r(E)/|E|2). Choosing λ := d|E|2/r(E)e,
this probability is increased to a positive constant. As before, the expected
number of good steps is bounded by O(r(E)(log r(E) + log wmax)) and
O(r(E)(log |E|+log wmax)), respectively. This leads to the following result.

Theorem 3 The expected number of generations until λ-PRLS or (1+λ)EA
with λ := d|E|2/r(E)e children constructs a minimum weight basis is bounded
by O(r(E) log wmax + |E| log |E|).

Using the modified mutation operator mentioned above, the probability
of a good step reduces to O(1/|E|) and we obtain the same bound on the
expected number of generations as in Theorem 3 already for λ := |E|.

The bounds of Theorems 1 and 2 depend on the maximum weight wmax.
For RLS we can actually proof the following strongly polynomial bound.

Theorem 4 The expected number of generations until RLS working on one
of the fitness functions f or f ′ constructs a minimum weight basis is bounded
by O(|E|2(log |E|)).
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Proof We construct a different set of weights as follows. Sort the weights
wi non-decreasingly. Define the weight w′

i, 1 ≤ i ≤ m as the rank of wi

in the sorted sequence (with the convention that equal weights have equal
rank). Now for all i, j ∈ {1, . . . m} it holds that w′

i − w′
j ≤ 0 if and only if

wi − wj ≤ 0. This implies that the behavior of RLS does not change if the
old weights wi are replaced by the new weights w′

i. Since w′
max ≤ |E|, the

claimed bound follows from Theorems 1 and 2. �

Neumann and Wegener [24] also consider multi-objective optimiza-
tion techniques for the (single-objective) minimum spanning tree prob-
lem. They study the behavior of two multi-objective evolutionary algo-
rithms called SEMO and GSEMO. The analysis can be carried over to
the minimum weight basis problem for matroids and results in a bound of
O(r(E)|E|(r(E) + log |E|+ log wmax)) on the number of generations.

Raidl, Koller and Julstrom [29] study specialized edge selection
strategies for the minimum spanning tree problem. For average case in-
stances they are able to reduce the total expected runtime excluding prepro-
cessing from O(|V |3 log |V |) to O(|V |3/2 log |V |). It seems likely that some
results can be extended to the minimum weight basis problem.

4 Matroid Intersection

The results presented in this section are motivated by the results for the
maximum matching problem in [14]. We consider the matroid intersection
problem which is defined as follows. Given two matroids M1 = (E,F1) and
M2 = (E,F2) on the same ground set E by their independence oracles,
compute a set X ∈ F1 ∩ F2 such that |X| is maximum. Let OPT denote
such an optimal element of F1 ∩ F2. The well-known matroid intersection
algorithm by Edmonds [6,22] starts with X := ∅. In each iteration, it
searches a shortest SX -TX -path in an auxiliary graph GX . This so-called
augmenting path gives rise to X ′ ∈ F1 ∩ F2 with |X ′| = |X| + 1. The
algorithm terminates if there is no augmenting path.

The auxiliary graph GX for X ∈ F1 ∩ F2 is defined as follows. Its node
set is E, the edges are given by AX ∪BX with AX := {(x, y) | y ∈ E \X, x ∈
C1(X, y) \ {y}} and BX := {(y, x) | y ∈ E \X, x ∈ C2(X, y) \ {y}}. We set
SX := {y ∈ E \X |X ∪ {y} ∈ F1} and TX := {y ∈ E \X |X ∪ {y} ∈ F2}.

Let the node sequence y0, x1, y1, . . . , xn, yn denote any shortest SX -TX -
path and define X ′ := X \ {x1, . . . , xn} ∪ {y0, y1, . . . , yn}. Then this path
is an augmenting path, i.e., X ′ ∈ F1 ∪ F2 and |X ′| = |X| + 1. In the EA
setting, such an augmentation step corresponds to simultaneously flipping
exactly the elements corresponding to the nodes of the augmenting path.

The above algorithm solves the matroid intersection problem in O(|E|3θ)
time, where θ is the maximum complexity of both independence oracles.
An improved algorithm due to Cunningham [3] requires O(|E|r(E)3/2θ)
time. Gabow and Xu [11] consider the special case of linear matroids.
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Their algorithms require O(|E|r(E)1.62) time in the unweighted case and
O(|E|r(E)1.77(log r(E) + log wmax)) time in the weighted case.

We study the performance of evolutionary algorithms for the matroid
intersection problem. We assume that we are given rank oracles r1 and r2

that compute for any set X ⊆ E its rank with respect to M1 and M2, respec-
tively. Again, we consider the RLS and (1+1) EA algorithm. We consider
the fitness function

f(s) := −Φ(s) · |E|+ |E(s)| ,

where Φ(s) := 2|E(s)| − r1(E(s)) − r2(E(s)). The expression is dominated
by Φ(s), which measures the infeasibility of E(s). If E(s) is a common
independent set, this first term vanishes and the fitness of s equals the
cardinality of E(s).

A more precise way to measure the infeasibility of E(s) is to replace Φ(s)
by Ψ(s) := min{|X||X ⊆ E,E(s) \ X ∈ F1 ∩ F2}|. However, Ψ(s) cannot
be easily computed. Hence, we resort to Φ(s). Note that 1

2Φ(s) ≤ Ψ(s) ≤
Φ(s) ≤ 2|E| holds for all s ∈ {0, 1}|E|.

First, we consider the phase until a common independent set has been
constructed. Note that the empty set is a trivial common independent set.
Hence, the first phase can also be skipped entirely.

Proposition 10 The expected number of generations until RLS or (1+1)EA
working on the fitness function f constructs a common independent set is
bounded by O(|E| log |E|).

Proof Suppose E(s) 6∈ F1∩F2 holds for the initial search point s. The fitness
function f is defined in such a way that the infeasibility Φ(s) never increases.
There are at least 1

2Φ(s) elements in E(s) whose individual removal from
E(s) decreases the infeasibility Φ(s). The probability that a step decreases
the infeasibility Φ(s) is at least 1

2 ·
Φ(s)
2|E| for RLS. For (1+1)EA we consider

the event that the complement of E(s) remains fixed and at least one of
1
2Φ(s) infeasible elements is removed from E(s). The probability of this
event is given by

(1− |E|−1)|E\E(s)| · (1− (1− |E|−1)Φ(s)/2) ,

which, by Proposition 3, can be lower bounded by 1
2e ·

Φ(s)
2|E| . Hence, the

expected number of generations until s describes an element in F1 ∩ F2 is
bounded from above by

Φ(s)∑
i=1

4e|E|
i

= O(|E| log |E|) .

This concludes the proof. �

Next, we consider the search process after having found a common inde-
pendent set X ∈ F1∩F2. We show that the length of a shortest SX -TX -path
in GX can be bounded in terms of |X| and |OPT |.
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Proposition 11 Let ε > 0 and X ∈ F1 ∩ F2 such that |X| < (1− ε)|OPT |.
There exists an SX-TX-path in GX with length at most 2d1/εe − 2.

Proof It was shown by Cunningham [3] that GX contains k := |OPT | −
|X| vertex-disjoint SX -TX -paths. Hence, there exists an SX -TX -path with
length at most 2b|X|/kc. Since |X| < (1 − ε) |OPT |, we have |X|/k <
(1− ε)/ε < 1/ε. Thus, the length of this path is bounded by 2d1/εe − 2. �

The bound on the length of an augmenting path allows us to lower bound
the probability that RLS or (1+1)EA finds such an augmenting path. These
bounds lead to upper bounds on the expected number of generations until
|E(s)| is increased, and finally, until an (1−ε)-approximation is constructed.

Theorem 5 For ε > 0, the expected number of generations until RLS or
(1+1)EA working on the fitness function f constructs an (1−ε)-approxima-
tion of a maximum element of F1 ∩ F2 is bounded by O(|E|2d1/εe).

Proof By Proposition 10, it suffices to consider the search process after
having found a search point s with E(s) ∈ F1∩F2. The fitness function f is
designed such that only steps leading to search points s′ describing common
independent sets of at least the same cardinality as s are accepted. Assume
that |E(s)| < (1− ε)|OPT |.

By Proposition 11, there exists an augmenting path in GE(s) of length
at most l := 2d1/εe − 2. The (1+1) EA flips exactly the l + 1 elements
corresponding to the nodes of this path with probability Ω(|E|−l−1). The
RLS algorithm needs l/2 2-bit flips shortening the augmenting path and a
final 1-bit flip to increase |E(s)|. The probability that this happens within
the next l/2 + 1 steps is bounded from below by Ω((|E|−2)l/2 · |E|−1) =
Ω(|E|−l−1). Hence, the expected number of generations to improve |E(s)|
is bounded by O(|E|l+1) for (1+1) EA and by O(l · |E|l+1) for RLS. A
more careful analysis for RLS yields the bound O(|E|l+1) (see [14]). Since
|OPT | ≤ |E|, the expected number of generations until RLS or (1+1) EA
constructs an (1 − ε)-approximation of a maximum element of F1 ∩ F2 is
bounded by O(|E| log |E|) + O(|E|) ·O(|E|l+1) = O(|E|2d1/εe). �

Giel and Wegener [14] have shown that RLS and (1+1)EA require an
exponential expected running time to find an optimal solution for certain
bipartite maximum matching problems. Since bipartite matching is a special
case of matroid intersection, we know that the matroid intersection problem
cannot be solved by RLS or (1+1) EA in polynomial time.

5 Weighted Matroid Intersection

In the weighted matroid intersection problem we additionally consider a
weight function w : E → N which assigns a non-negative weight w(e) to
each element e ∈ E of the ground set. The task is to compute a common
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independent set X ∈ F1 ∩ F2 such that its weight w(X) :=
∑

e∈X w(e) is
maximum.

Similar to the unweighted case we consider the fitness function

f(s) := −Φ(s) · wub +
∑

e∈E(s)

w(e) ,

where wub := |E| · wmax is an upper bound on the weight of any subset of
E.

Note that the RLS algorithm is not suited for the weighted matroid
intersection problem since, in general, simultaneous flips of more than two
bits are required. In the unweighted case, a long augmenting path can be
broken into a series of 2-bit flips maintaining the fitness value and one
final 1-bit flip. In the weighted case, there are simple examples of paths of
length three where such a decomposition into a sequence of 2-bit flips with
non-negative difference of the fitness value does not exist. Consider two
matroids over E = {a, b, c} given by their bases sets B1 = {{a, b}, {a, c}}
and B2 = {{a, c}, {b, c}}. Let w(a) = w(c) = 2, w(b) = 3, and X = {b}.
Then X and E \ X are common independent sets with w(X) = 3 and
w(E \X) = 4. The unique SX -TX -path in GX is a-b-c. Any 1- or 2-bit flip
decreases the weight or leads to a set that is dependent in at least one of
the matroids.

Although bit flips of at most two bits are not sufficient in the weighted
case, it is possible to obtain a 1

2 -approximation using only bit flips of at most
three bits. We restrict ourselves in the following to this special setting and
analyze the expected number of generations to obtain a 1

2 -approximation.

Proposition 12 Let s be a search point such that its fitness value f(s)
cannot be improved by flipping at most three bits. Then w(s) ≥ 1

2wOPT

holds.

Proof Define A := OPT and B := E(s). Since the fitness value f(s) cannot
be improved by flipping one or two bits of s, we have C1(B, a) 6= ∅ and
C2(B, a) 6= ∅ for all a ∈ A \B. Define X := A \B = {x1, . . . xk}.

By Proposition 6, there exist sets Y ′ = {y′1, . . . , y′k} ⊆ B \ A and Y ′′ =
{y′′1 , . . . , y′′k} ⊆ B \ A such that y′i ∈ C1(B, xi) and y′′i ∈ C2(B, xi) for
1 ≤ i ≤ k. Since the fitness value f(s) cannot be improved by flipping at
most three bits of s, we have w(xi) ≤ w(y′i)+w(y′′i ) for 1 ≤ i ≤ k. Summing
up these inequalities yield w(A\B) = w(X) ≤ w(Y ′)+w(Y ′′) ≤ 2 w(B\A).
Hence, w(s) ≥ 1

2wOPT holds. �

In order to analyze the expected number of generations until a 1
2 -approxi-

mate solution is found we prove that there exists at least one bit flip with
a certain weight increase.

Proposition 13 Let s be a search point such that w(s) ≤ ( 1
2−ε) wOPT holds

for some ε > 0. Then there exists an accepted bit flip involving at most three
bits with a weight increase of at least 2ε

|E|wOPT .
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Proof Define A := OPT , B := E(s) and X := A \ B = {x1, . . . , xk}. We
use the index sets I ′ and I ′′ to denote those elements of X whose addition
to B causes a cycle in the matroid M1 and M2, respectively.

I ′ := {i | 1 ≤ i ≤ k, C1(B, xi) 6= ∅}
I ′′ := {i | 1 ≤ i ≤ k, C2(B, xi) 6= ∅}

By Proposition 6, there exist a set Y ′ = {y′i | i ∈ I ′} ⊆ B \ A such that
y′i ∈ C1(B, xi) for all i ∈ I ′. Likewise, there exists a set Y ′′ = {y′′i | i ∈
I ′′} ⊆ B \ A such that y′′i ∈ C2(B, xi) for all i ∈ I ′′. We define the weights
wi, w′

i and w′′
i for 1 ≤ i ≤ k as follows:

wi := w(xi)

w′
i :=

{
w(y′i) if i ∈ I ′

0 otherwise

w′′
i :=

{
w(y′′i ) if i ∈ I ′′

0 otherwise

By assumption, w(B) ≤ ( 1
2 − ε) w(A) holds. Hence, we have w(A \ B) −

w(B \A) ≥ ( 1
2 + ε) w(A). Since w(B \A) ≤ w(B) ≤ ( 1

2 − ε) w(A), it follows
that w(A \B)− 2w(B \A) ≥ 2ε w(A). We have

k∑
i=1

wi − w′
i − w′′

i = w(X)− w(Y ′)− w(Y ′′)

≥ w(A \B)− 2w(B \A) ≥ 2ε w(A)

Hence, there exists an i ∈ {1, . . . , k} such that wi − w′
i − w′′

i ≥ 2ε
k w(A).

Consider the bit flip that adds the element xi and removes the elements
y′i and y′′i if i ∈ I ′ and i ∈ I ′′, respectively (note that y′i and y′′i might be
identical). This bit flip involves at most three bits and has a weight increase
of at least 2ε

|E|w(A). By construction, the resulting bit string encodes a
common independent set and the bit flip is accepted. �

Now we can prove our main result, the expected number of generations
for a 1

2 -approximation of the weighted matroid intersection problem.

Theorem 6 The expected number of generations until (1+1)EA working on
the fitness function f constructs a 1

2 -approximation of a maximum weight
element of F1 ∩ F2 is bounded by O(|E|4(log r + log wmax)), where r :=
min{r1(E), r2(E)}.

Proof By Proposition 10 (which also holds for the weighted case), it suffices
to consider the search process after having found a search point s with
E(s) ∈ F1 ∩ F2. The fitness function f is designed such that only steps
leading to search points s′ that describe common independent sets of at
least the same weight as s are accepted.
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Now consider any search point s with E(s) ∈ F1∩F2 and w(s) < 1
2wOPT .

Define ε := 1
2 −

w(s)
wOP T

, i.e., w(s) = ( 1
2 − ε) wOPT holds. By Proposition 13

there exists an accepted bit flip involving at most three bits with a weight
increase of at least 2ε

|E|wOPT . Such a step is called a good step. A good step
decreases the difference ε · wOPT between the weight w(s) of the current
search point s and 1

2wOPT on average by a factor of 2/|E|. Hence, after N
good steps, the expected difference between w(s) and 1

2wOPT is given by
(1 − 2/|E|)N · ( 1

2wOPT − w(s)). Since wOPT ≤ r · wmax and w(s) ≥ 0, we
obtain the upper bound (1− 2/|E|)N ·D, where D := 1

2r · wmax.
If N := d(ln 2) · |E|

2 · log(3D)e, this bound is at most 1
3 . The difference is

half-integral which implies that we have actually reached a 1
2 -approximation

after at most N good steps. The probability of a good step is bounded from
below by Ω(|E|−3). Hence, the expected number of generations for N good
steps is bounded by

O(N |E|3) = O(|E|4(log r + log wmax)) .

This concludes the proof. �

Consider the following modification of the RLS algorithm. Choose b ∈
{0, 1, 2} randomly. If b < 2 proceed as before. Otherwise, choose (i, j, k) ∈
{(a, b, c) | 1 ≤ a < b < c ≤ |E|} randomly and flip the i-th, j-th and k-th
bit of s. We call this algorithm RLS3.

Since we restrict ourselves to bit flips involving at most three bits, all
good steps that are accepted by the (1+1) EA can also be achieved using
RLS3. Moreover, the probability of a particular bit flip is again bounded
from below by Ω(|E|−3). Hence, Theorem 6 does not only hold for (1+1)EA,
but also for RLS3.

6 Intersection of three or more matroids

Furthermore, the result of Theorem 6 can be easily generalized to the in-
tersection of p matroids Mi = (E,Fi), 1 ≤ i ≤ p. The task is to compute
an independent set X ∈

⋂ p
i=1 Fi with maximum weight. This problem is

NP-hard for p ≥ 3, as finding a Hamiltonian circuit in a directed graph is a
special case; see [19].

Similar to the previous case of p = 2, there are situations in which si-
multaneous flips of at least p + 1 bits are required. Therefore, we do not
consider the RLS algorithm in this section. A modification of the RLS al-
gorithm similar to that described in the last paragraphs of the preceding
section is still possible though.

The definition of the function Φ(s) is adjusted as follows. Let

Φ(s) := p |E(s)| −
p∑

i=1

ri(E(s)) for all s ∈ {0, 1}|E| .
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The bound of Proposition 10 increases to O(p|E| log |E|). The results of
Proposition 13 carry over to the intersection of p matroids, although the
achieved approximation ratio is worse.

Proposition 14 Let s be a search point such that w(s) ≤ ( 1
p−ε) wOPT holds

for some ε > 0. Then there exists an accepted bit flip involving at most p+1
bits with a weight increase of at least p ε

|E|wOPT .

The lower bound for the probability of picking a particular bit flip of
at most p + 1 bits reduces to Ω(|E|−p−1). This observation leads to the
following generalization of Theorem 6.

Theorem 7 Given p matroids Mi = (E,Fi), 1 ≤ i ≤ p, the expected number
of generations until (1+1)EA working on the fitness function f constructs
a 1

p -approximation of a maximum weight element of
⋂

1≤i≤p Fi is bounded
by O(|E|p+2(log r + log wmax)), where r := min{ri(E) | 1 ≤ i ≤ p}.

Similar to the minimum weight basis problem we can use parallel ver-
sions of (1+1)EA and RLS to reduce the number of generations. Choosing
the number of offspring per generation as λ := |E|p+1 improves the prob-
ability of a good step from Ω(|E|−p−1) to a positive constant. As before,
the expected number of good steps is bounded by O(|E|(log r + log wmax)).
This leads to the following result.

Corollary 1 Given p matroids Mi = (E,Fi), 1 ≤ i ≤ p, the expected num-
ber of generations until (1+λ) EA with λ := |E|p+1 children working on
the fitness function f constructs a 1

p -approximation of a maximum weight
element of

⋂
1≤i≤p Fi is bounded by O(|E|(log r + log wmax)).

7 Conclusion

We have analyzed the performance of (1+1) EA and RLS on a very gen-
eral class of combinatorial optimization problems ranging from very simple
problems that can be solved optimally by the greedy method up to NP-hard
problems. Our results provide an indication of the enormous power of evo-
lutionary algorithms from a theoretical point of view. It turns out that the
very general and abstract structure of matroid optimization problems suf-
fices to lead evolutionary algorithms into promising directions and to finally
obtain optimal or at least provably good solutions after only polynomially
many iterations.
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