
EXACUS: Efficient and Exact Algorithms for Curves
and Surfaces?

Eric Berberich1, Arno Eigenwillig1, Michael Hemmer2, Susan Hert3, Lutz Kettner1,
Kurt Mehlhorn1, Joachim Reichel1, Susanne Schmitt1, Elmar Scḧomer2, and

Nicola Wolpert1

1 Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany
2 Johannes-Gutenberg-Universität Mainz, Germany

3 Serials Solutions, Seattle, WA., USA

Abstract. We present the first release of the EXACUS C++ libraries. We aim
for systematic support of non-linear geometry in software libraries. Our goals are
efficiency, correctness, completeness, clarity of the design, modularity, flexibility,
and ease of use. We present the generic design and structure of the libraries, which
currently compute arrangements of curves and curve segments of low algebraic
degree, and boolean operations on polygons bounded by such segments.

1 Introduction

The EXACUS-project (Efficient and Exact
Algorithms for Curves and Surfaces4) aims
to develop efficient, exact (the mathemati-
cally correct result is computed), and com-
plete (for all inputs) algorithms and implementations for low-degree non-linear geom-
etry. Exact and complete methods are available in the algebraic geometry community,
but they are not optimized for low-degree or large inputs. Efficient, but inexact and in-
complete methods are available in the solid modeling community. We aim to show that
exactness and completeness can be obtained at a moderate loss of efficiency. This re-
quires theoretical progress in computational geometry, computer algebra, and numerical
methods, and a new software basis. In this paper, we present the design of the EXACUS

C++ libraries. We build upon our experience with CGAL [12, 22] and LEDA [25].
CGAL, theComputational Geometry Algorithms Library, is the state-of-the-art in

implementing geometric algorithms completely, exactly, and efficiently. It deals mostly
with linear objects and arithmetic stays within the rational numbers.

Non-linear objects bring many new challenges with them: (1) Even single objects,
e.g., a single algebraic curve, are complex, (2) there are many kinds of degeneracies, (3)
and point coordinates are algebraic numbers. It is not clear yet, how to best cope with
these challenges. The answer will require extensive theoretical and experimental work.

? Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces).

4 http://www.mpi-inf.mpg.de/EXACUS/

1

Therefore, we aim for a crisp and clear design, flexibility, modularity, and ease of use
of our libraries.

The EXACUS C++ libraries compute arrangements of curves and curve segments
of low algebraic degree, and boolean operations on polygons bounded by such seg-
ments. The functionality of our implementation is complete. We support arcs going to
infinity and isolated points. We deal with all degeneracies, such as singularities and
intersections of high multiplicity. We always compute the mathematically correct re-
sult. Important application areas are CAD, GIS and robotics. The recent Open Source
release contains the full support for conics and conic segments, while existing imple-
mentations for cubic curves and a special family of degree four curves are scheduled for
later releases. We work currently on extending our results to arrangements of general-
degree curves in the plane [29] and quadric surfaces in space and boolean operations on
them [4].

Here, we present the generic design and the structure of the EXACUS C++ libraries.
The structure of the algorithms and algebraic methods is reflected in a layered archi-
tecture that supports experiments at many levels. We describe the interface design of
several important levels. Two interfaces are improvements of interfaces in CGAL, the
others are novelties. This structure and design has proven valuable in our experimental
work and supports future applications, such as spatial arrangements of quadrics.

2 Background and Related Work

The theory behind EXACUS is described in the following series of papers: Berberich et
al. [3] computed arrangements of conic arcs based on the LEDA [25] implementation
of the Bentley-Ottmann sweep-line algorithm [2]. Eigenwillig et al. [10] extended the
sweep-line approach to cubic curves. A generalization of Jacobi curves for locating tan-
gential intersections is described by Wolpert [31]. Berberich et al. [4] recently extended
these techniques to special quartic curves that are projections of spatial silhouette and
intersection curves of quadrics and lifted the result back into space. Seidel et al. [29]
describe a new method for general-degree curves. Eigenwillig et al. [9] extended the
Descartes algorithm for isolating real roots of polynomials to bit-stream coefficients.

Wein [30] extended the CGAL implementation of planar maps to conic arcs with an
approach similar to ours. However, his implementation is restricted to bounded curves
(i.e. ellipses) and bounded arcs (all conic types), and CGAL ’s planar map cannot han-
dle isolated points. He originally used Sturm sequences with separation bounds and
switched now to theExpr number type of CORE [21] to handle algebraic numbers.

Emiris et al. [11] proposed a design for a support of non-linear geometry in CGAL

focusing on arrangements of curves. Their implementation was limited to circles and
had preliminary results for ellipsoidal arcs. Work on their kernel has continued but is not
yet available. Their approach is quite different from ours: They compute algebraic num-
bers for both coordinates of an intersection point, while we need only thex-coordinate
as algebraic number. On the other hand, they use statically precomputed Sturm se-
quences for algebraic numbers of degree up to four, an approach comparing favorably
with our algebraic numbers. However, their algorithm for arrangement computations
requires evaluations of the curve at points with algebraic numbers as coordinates.

2

CONIX(CnX) CUBIX(CbX) QUADRIX(QdX)
SWEEPX (SoX)

NUMERIX (NiX)
Library Support (LIS)

BOOST GMP CORE LEDA CGAL QT

Fig. 1.Layered architecture of the EXACUS C++ libraries (with their name abbreviations).

The libraries MAPC [23] and ESOLID [8] deal with algebraic points and curves and
with low-degree surfaces, respectively. Both libraries are not complete, e.g., require
surfaces to be in general position.

Computer algebra methods, based on exact arithmetic, guarantee correctness of their
results. A particularly powerful method related to our problems is Cylindrical Algebraic
Decomposition invented by Collins [6] and subsequently implemented (with numerous
refinements). Our approach to curve and curve pair analyses can be regarded as a form
of cylindrical algebraic decomposition of the plane in which the lifting phase has been
redesigned to take advantage of the specific geometric setting; in particular, to keep the
degree of algebraic numbers low.

3 Overview and Library Structure

The design of the 94.000 lines of source code and documentation of the EXACUS

C++ libraries follows thegeneric programming paradigmwith C++ templates, as it
is widely known from theStandard Template Library, STL [1], and successfully used
in CGAL [12, 5, 19]. We useconcepts5 from STL (iterators, containers, functors) and
CGAL (geometric traits class, functors) easing the use of the EXACUS libraries. C++
templates provide flexibility that is resolved at compile-time and hence has no runtime
overhead. This is crucial for the efficiency and flexibility at the number type level (incl.
machine arithmetic), however, is insignificant at higher levels of our design. In particu-
lar, a large part of our design can also be realized in other paradigms and languages.

EXACUS uses several external libraries: BOOST (interval arithmetic), GMP and
CORE (number types), LEDA (number types, graphs, other data structures, and graph-
ical user interface), CGAL (number types and arrangements), and Qt (graphical user
interface). Generic programming allows us to avoid hard-coding dependencies. For ex-
ample, we postpone the decision between alternative number type libraries to the final
application code.

5 A conceptis a set of syntactical and semantical requirements on a template parameter, and a
type is called amodelof a conceptif it fulfills these requirements and can thus be used as an
argument for the template parameter [1].

3

Assignable

DefaultConstructible

EqualityComparable
Field

UFDomain

FieldWithSqrt

STL

STL

STL

IntegralDomainIntegralDomainWithoutDiv
EuclideanRing

Fig. 2.The number type concepts in EXACUS. They refine three classical STL concepts.

We organized the EXACUS libraries in a layered architecture, see Figure 1, with
external libraries at the bottom and applications at the top. In between, we have li-
brary support in LIS, number types, algebraic and numerical methods in NUMERIX,
and the generic implementation of a sweep-line algorithm and a generic generalized
polygon that supports regularized boolean operations on regions bounded by curved
arcs in SWEEPX. Furthermore, SWEEPX containsgeneric algebraic points and seg-
ments(GAPS). It implements the generic and curve-type independent predicates and
constructions for the sweep-line algorithm.

In this paper, we focus on the interface design between NUMERIX, SWEEPX, GAPS,
and the applications. Descriptions of the application layer can be found in [3, 10, 4].

4 NUMERI X Library

The NUMERIX library comprises number types, algebraic constructions to build types
from types, such as polynomials (over a number type), vectors, and matrices, and a
tool box of algorithms solving linear systems (Gauss-Jordan elimination), computing
determinants of matrices (Bareiss and division-free method of Berkowitz [26]), gcds,
Sylvester and B́ezout matrices for resultants and subresultants, isolating real roots of
polynomials (Descartes algorithm), and manipulating algebraic numbers. We import the
basic number types integer, rationals and (optionally) real expressions from LEDA [25],
GMP [17] and CORE [21], or EXT [28]. We next discuss core aspects of NUMERIX.

Number Type Concepts and Traits Classes:We aim for the Real RAM model of com-
putation. An effective realization must exploit the tradeoff between expressiveness and
efficiency of different number type implementations. In EXACUS, we therefore provide
a rich interface layer of number type concepts as shown in Figure 2. It allows us to
write generic and flexible code with maximal reuse. All number types must provide
the construction from small integers, in particular from 0 and 1.IntegralDomain,
UFDomain, Field, and EuclideanRing correspond to the algebraic concepts with
the same name.FieldWithSqrt are fields with a square root operator. The concept
IntegralDomainWithoutDiv also corresponds to integral domains in the algebraic
sense; the distinction results from the fact that some implementations of integral do-
mains, e.g.,CGAL::MP Float, lack the (algebraically always well defined) integral di-
vision. A number type may be ordered or not; this is captured in theRealComparable
concept, which is orthogonal to the other concepts. The fieldsQ andZZ/pZZare ordered
and not ordered respectively.

The properties of number types are collected in appropriate traits classes. Each
concrete number typeNT knows the (most refined) concept to which it belongs; it is
encoded inNT traits<NT>::Algebra type. The usual arithmetic and comparison
operators are required to be realized via C++ operator overloading for ease of use.

4

The division operator is reserved for division in fields. All other unary (e.g., sign)
and binary functions (e.g., integral division, gcd) must be models of the standard STL

AdaptableUnaryFunction or AdaptableBinaryFunction concept and local to a
traits class (e.g.,NT traits<NT>::Integral div). This allows us to profit maximally
from all parts in the STL and its programming style.

Design Rationale:Our interface extends the interface in CGAL [12, 5, 19, 22] that only
distinguishesEuclideanRing, Field, andFieldWithSqrt. The finer granularity is
needed for the domain of curves and surfaces, in particular, the algebraic numbers and
algorithms on polynomials. We keep the arithmetic and comparison operators for ease
of use. Their semantic is sufficiently standard to presume their existence and compliance
in existing number type libraries for C++. For the other functions we prefer the trouble-
free and extendible traits class solution; this was suggested by the name-lookup and
two-pass template compilation problems experienced in CGAL.

Polynomials: The classPolynomial<NT> realizes polynomials with coefficients of
type NT. Depending on the capabilities ofNT, the polynomial class adapts internally
and picks the best implementation for certain functions (see below for an example).
The number typeNT must be at least of theIntegralDomainWithoutDiv concept.
For all operations involving division, theIntegralDomain concept is required. Some
functions require more, for example, the gcd-function requiresNT to be of theField
or UFDomain concept. In general, the generic implementation of the polynomial class
encapsulates the distinction between different variants of functions at an early level and
allows the reuse of generic higher-level functions.

TheAlgebra type of Polynomial<NT> is determined via template meta-program-
ming by theAlgebra type of NT. It remains the same except in the case ofEuclide-
anRing, which becomes aUFDomain, and both field concepts, which become anEu-
clideanRing. NT can itself be an instance ofPolynomial, yielding a recursive form of
multivariate polynomials. In our applications, we deal only with polynomials of small
degree (so far at most 16) and a small number of variables (at most 3) and hence the
recursive construction is appropriate. Some convenience functions hide the recursive
construction in the bi- and trivariate case.

We use polynomial remainder sequences (PRS) to compute the gcd of two poly-
nomials (uni- or multivariate). Template meta-programming is used to select the kind
of PRS: Euclidean PRS over a field and Subresultant PRS (see [24] for exposition and
history) over a UFD. An additional meta-programming wrapper attempts to make the
coefficients fraction-free, so that gcd computation over the field of rational numbers is
actually performed with integer coefficients and the Subresultant PRS (this is faster).
Gcd computations are relatively expensive. Based on modular resultant computation,
we provide a fast one-sided probabilistic test for coprimality and squarefreeness that
yields a significant speedup for non-degenerate arrangement computations [18]. We
offer several alternatives for computing the resultant of two polynomials: via the Subre-
sultant PRS or as determinant of the Sylvester or Bézout matrix [15, ch. 12]. Evaluating
a Bézout determinant with the method of Berkowitz [26] can be faster than the Subre-
sultant PRS for bivariate polynomials of small degrees over the integers. The Bézout
determinant can also express subresultants, see e.g. [16, 20].

5

Algebraic Numbers:TheAlgebraic real class represents a real root of a square-free
polynomial. The representation consists of the defining polynomial and an isolating
interval, which is an open interval containing exactly one root of the polynomial. Ad-
ditionally, the polynomial is guaranteed to be non-zero at the endpoints of the interval.
As an exception, the interval can collapse to a single rational value when we learn that
the root has this exact rational value.

We use the Descartes Method [7, 27] to find isolating intervals for all real roots of
a polynomial. We have a choice of different implementations, of which Interval Des-
cartes [9] and Sturm sequences are ongoing work. We cross link all real roots of a
polynomial, such that, for example, if one number learns how to factorize the defining
polynomial, all linked numbers benefit from that information and simplify their repre-
sentation. We learn about such factorizations at different occasions in our algorithms,
e.g., if we find a proper common factor in the various gcd computations.

Interval refinement is central to the Descartes Method, to the comparison of al-
gebraic numbers, and to some algorithms in the application layer [10]. We expose
the refinement step in the following interface:refine() bisects the isolating interval.
strong refine(Field m) refines the isolating interval untilm is outside of the closed
interval. refine to(Field lo, Field hi) intersects the current interval with the
isolating interval (lo, hi). The global functionrefine zero against refines an isolat-
ing interval against all roots of another polynomial. The member functionx.rational
between(y) returns a rational number between the two algebraic realsx andy. Here,
it is desirable to pick a rational number of low-bit complexity.

5 SWEEPX Library

The SWEEPX library provides a generic sweep-line algorithm and generalized poly-
gon class that supports regularized boolean operations on regions bounded by curved
arcs. We based our implementation on the sweep-line algorithm for line-segments from
LEDA [25], which handles all types of degeneracies in a simple unified event type. We
extended the sweep-line approach with a new algorithm to reorder curve segments con-
tinuing through a common intersection point in linear time [3] and with ageometric
traits classdesign for curve segments, which we describe in more detail here.

1 1

2As input, we support full curves and, for conics, also arbitrary
segments of curves, but both will be preprocessed into potentially
smallersweepable segmentssuitable for the algorithm. Asweep-
able segmentis x-monotone, has a constant arc number in its inte-
rior (counting without multiplicities from bottom to top), and is free of one-curve events
(explained in the next section) in its interior.

Thegeometric traits classdefines the interface between the generic sweep-line al-
gorithm and the actual geometric operations performed in terms of geometric types,
predicates, and constructions, again realized as functors.6 The idea of geometric traits
classes goes back to CGAL [12, 5]. Our set of requirements is leaner than the geomet-
ric traits class in CGAL ’s arrangement and planar map classes [13], however, feedback
from Emiris et al. [11] and our work is leading to improvements in CGAL ’s interface.

6 We omit here the access functions for the functors for brevity, see [12] for the details.

6

A geometric traits class following theCurveSweepTraits 2 concept needs a type
Point 2, representing end-points as well as intersection points, and a typeSegment 2,
representing curve segments. In STL terminology, both types have to be default-con-
structible and assignable, and are otherwise opaque types that we manipulate only
through the following predicates, accessors, and constructions. Observe the compact-
ness of the interface.

Predicates:
• Compare xy 2 andLess xy 2 lexicographically compare two points, the former

with a three-valued return type and the latter as a predicate.
• Is degenerate 2 returns true if a segment consists only of one point.
• Do overlap 2 tells whether two segments have infinitely many points in common

(i.e., intersect in a non-degenerate segment).
• Compare y at x 2 returns the vertical placement of a point relative to a segment.
• Equal y at x 2 determines if a point lies on a segment (equivalent to testing
Compare y at x 2 for equality, but may have a more efficient implementation).

• Multiplicity of intersection computes the multiplicity of an intersection
point between two segments. It is used in the linear-time reordering of segments
and hence used only for non-singular intersections.

• Compare y right of point determines the ordering of two segments just after
they both pass through a common point. It is used for the insertion of segments
starting at an event point.

Accessors and Constructions:
• Source 2 andTarget 2 return the source and target point of a curve segment.
• Construct segment 2 constructs a degenerate curve segment from a point.
• New endpoints 2 andNew endpoints opposite 2 replace the endpoints of a

curve segment with new representations and return this new segment. The latter
functor also reverses the orientation of the segment. They are used in the initializa-
tion phase of the sweep-line algorithm where equal end-points are identified and
where the segments are oriented canonically from left to right [25].

• Intersect 2 constructs all intersection points between two segments in lexico-
graphical order.

• Intersect right of point 2 constructs the first intersection point between two
segments right of a given point. It is used only for validity checking or if caching is
disabled.

We also offer a geometric traits class for CGAL ’s planar map and arrangement classes,
actually implemented as a thin adaptor for GAPSdescribed next. Thus, we immediately
get traits classes for CGAL for all curve types available in EXACUS. Our traits class sup-
ports the incremental construction and the sweep-line algorithm in CGAL. This solution
is independent of LEDA.

6 Generic Algebraic Points and Segments (GAPS)

The generic point and segment types are essentially derived from the idea of a cylin-
drical algebraic decomposition of the plane and a number type forx-coordinates, while

7

y-coordinates are represented implicitly with arc numbers on supporting curves. Study-
ing this more closely [10], one can see that all predicates and constructions from the
previous section can be reduced to situations with one or two curves only.

The software structure is now as follows: The application libraries provide a curve
analysis and a curve pair analysis, which depend on the actual curve type. Based on
these analyses, the GAPS part of SWEEPX implements the generic algebraic points and
segments with all predicates and constructions needed for the sweep-line algorithm,
which is curve-type independent generic code. Small adaptor classes present the GAPS

implementation in suitable geometric traits classes for the sweep-line implementation
in SWEEPX or the CGAL arrangement.

GAPS requires two preconditions; squarefreeness of the defining polynomial and
coprimality of the defining polynomials in the curve pair analysis. We allow to defer the
check to the first time at which any of the analysis functions is called. The application
libraries may impose further restrictions on the choice of a coordinate system. If a
violation is detected, an exception must be thrown that is caught outside SWEEPX.
The caller can then remove the problem and restart afresh. CONIX does not restrict
the choice of coordinate system. CUBIX and QUADRIX assume a generic coordinate
system to simplify the analysis, see [10, 4] for details.

We continue with curve and curve pair analysis, and how we handle unboundedness.

Curve Analysis:A planar curve is defined as zero set of a bivariate squarefree integer
polynomial f . We look at the curve in the real affine plane perx-coordinate and see
arcs at varyingy-values on the fictitious vertical linex = x0 at eachx-coordinatex0.
At a finite number of events, the number and relative position of arcs changes. Events
arex-extreme points, singularities (such as self-intersections and isolated points) and
vertical asymptotes (line components, poles).

The result of the curve analysis is a description of the curve’s geometry at these
events and over the open intervals ofx-coordinates between them. This description is
accessible through member functions in theAlgebraicCurve 2 concept. It consists of
the number of events, theirx-coordinates given as algebraic numbers, the number of
arcs at events and between them, an inverse mapping from anx-coordinate to an event
number, and it gives details for each event in objects of theEvent1 info class.

(0,0)

(2,2)

(0,2)
TheEvent1 info class describes the topology of a curve over an event

x-coordinatex0. The description answers four questions on the local topology
of the curve over the correspondingx-coordinate: (1) How many real arcs
(without multiplicities) intersect the (fictitious) vertical linex = x0? (2) Does
the curve have a vertical line component atx0? (3) Is there a vertical asymptote
at x0, and how many arcs approach it from the left and right? (4) For any
intersection point of the curve with the vertical linex = x0, how many real
arcs on the left and right are incident to it? In the example figure, (0,0) stands for an
isolated point, (0,2) for a leftx-extreme point or cusp, and (2,2) for a singular point.

Curve Pair Analysis:We study ordered pairs of coprime planar algebraic curvesf and
g. Similar to the curve analysis, we look at the pair of curves in the real affine plane per
x-coordinate and see arcs of both curves at varyingy-values above eachx-coordinate.
At a finite number of events, the number and relative position of arcs changes: There

8

are intersections at which arcs of both curves run together, there are one-curve events,
and there are events that are both.

The result of the curve pair analysis is a description of the curves’ geometry at
these events and over the open intervals ofx-coordinates between them. This descrip-
tion is accessible through member functions in theAlgebraicCurvePair 2 concept.
It consists of various mappings of event numbers to indices of roots in the resultants
res(f , fy), res(g,gy), and res(f ,g), to x-coordinates and reverse, and it gives details for
each event in objects of theEvent2 slice class.

An Event2 slice is a unified representation of the sequence of arcs over some
x-coordinatex0, be there an event or not [10, 4]. A slice of a pair(f ,g) at x0 describes
the order of points off and g lying on the fictitious vertical linex = x0, sorted by
y-coordinate. Points are counted without multiplicities.

arc no.

1

2
f g

0 0 0

1

1

pos.

f
g

x0Let thearc numberof a point on f be its rank in the
order amongst all points off on x = x0, and respectively
for points ong. Let theposition numberof a point on f
or g be its rank in the order amongst all points off ∪g on
x = x0. All ranks are counted, starting at 0, in increasing
order ofy-coordinates. An important function in the slice
representation is the mapping of arc numbers, used in the
point and sweepable segment representations, to position
numbers, used to comparey-coordinates of points on different curvesf andg. For the
example in the figure, this mapping will tell us that the second point ofg is the third
amongst all points (w.r.t.y-coordinates), i.e., it maps arc number 1 to position 2.

Unbounded Curves and Segments:The implementation is not restricted to bounded
curves and segments. We define symbolic “endpoints” at infinity, such that unbounded
curves and segments, e.g., the hyperbolaxy−1 = 0 or any part of it, can be included in
a uniform representation of sweepable segments. We use two techniques, compactifi-
cation and symbolic perturbation: We add minus- and plus-infinity symbolically to the
range ofx-coordinate values. Then, we perturbx-coordinates to represent “endpoints”
of curves that approach a pole and unbounded “endpoints” of vertical lines and rays. Let
ε > 0 be an infinitesimal symbolic value. We perturb thex coordinate of an endpoint of
a curve approaching a pole from the left by−ε, the lower endpoint of a vertical line by
−ε2, the upper endpoint of a vertical line byε2, and an endpoint of a curve approaching
a pole from the right byε. We obtain the desired lexicographic order of event points.

We also extend the curve analyses with the convention that forx-coordinates of
minus- or plus-infinity we obtain the number and relative position of arcs before the
first or after the last event, respectively. Note that this is not ”infinity” in the sense of
projective geometry.

7 Evaluation and Conclusion

The libraries are extensively tested and benchmarked with data sets showing runtime be-
havior, robustness, and completeness. In particular for completeness we manufactured
test data sets for all kinds of degeneracies [3, 10, 4]. A preliminary comparison [14]

9

between Wein [30], Emiris et al. [11], and us showed that our implementation was the
only robust and stable and almost always the fastest implementation at that time. In par-
ticular, the other implementations could not handle large random instances, degenerate
instances of several ellipses intersecting in the same point or intersecting tangentially,
and instances of ellipses with increasing bit-size of the coefficients. A new comparison
is planned when the other implementations have stabilized.

Data set Segs Vertices Halfedges SoX CGAL

random30 266 2933 11038 6.7 8.0
random60 454 11417 44440 27.7 34.6
random90 680 26579 104474 67.5 81.2

The report [14] also contains a com-
parison of our sweep-line algorithm with
the CGAL sweep-line algorithm used for
the planar map with intersections. We
briefly summarize the result in the table that shows running times in seconds of both
implementations measured for three random instances of cubic curves of 30, 60, and 90
input curves respectively on a Pentium IIIM at 1.2 GHz, Linux 2.4,g++ 3.3.3, with-O2
-DNDEBUG, LEDA 4.4.1, and CGAL 3.0.1.

Profiling the executions on the “random30” instance exhibits a clear difference in
the number of predicate calls. The dominant reason for this is certainly reordering by
comparison (CGAL) as opposed to reordering by intersection multiplicities (SoX).

Additionally, we report the running time of a
hand-constructed instance: a pencil of 18 curves
intersecting in five distinct points, in four of
them with multiplicity 2, and nowhere else. Here
SoX::sweep curves() can exhibit the full ben-
efit of linear-time reordering; 1.7 seconds for SoX
and 4.3 seconds for CGAL.

All experiments show an advantage for our
implementation. We took care not to use exam-
ples that would penalize the CGAL implementa-
tion with the interface mapping to the CUBIX im-
plementation (see [14]), but the implementations are too complex to allow a definitive
judgment on the relative merits of the two implementations based on above numbers.

We conclude with a few remarks on efficiency: Arithmetic is the bottleneck, so we
use always the simplest possible number type, i.e., integers where possible, then ra-
tionals, LEDA real or CORE, and algebraic numbers last. However, using LEDA reals
naively, for example, to test for equality or in near equality situations, can be quite
costly, which happened in the first CONIX implementation, and using algebraic num-
bers or a number type that extends rationals with one or two fixed roots instead can
be beneficial. The released CONIX implementation has been improved considerably
following the ideas developed for the CUBIX implementation. Furthermore, we use
caching of the curve analysis and we compute all roots of a polynomial at once. All
roots of the same polynomial are cross linked, and if one root happens to learn about
a factorization of the polynomial, all other roots will also benefit from the simplified
representation. We use modular arithmetic as a fast filter test to check for inequality.

So far we have almost exclusively worked with exact arithmetic and optimized its
runtime. Floating-point filters have been only used insofar that they are integral part of
some number types. More advanced filters are future work.

10

We use the sweep-line algorithm for computing arrangements, but since arithmetic
is the obvious bottleneck, it might pay off to consider incremental construction with its
lower algebraic degree in the predicates and the better asymptotic runtime.

CGAL plans a systematic support for non-linear geometry. We contribute to this
effort with our design experience and implementations presented here.

Acknowledgements

We would like to acknowledge contributions by Michael Seel, Evghenia Stegantova,
Dennis Weber, and discussions with Sylvain Pion.

References

1. M. H. Austern.Generic Programming and the STL. Addison-Wesley, 1998.
2. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-

tions. IEEE Trans. Comput., C-28(9):643–647, September 1979.
3. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schömer. A compu-

tational basis for conic arcs and boolean operations on conic polygons. InESA 2002, LNCS
2461, pages 174–186, 2002.

4. E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact, complete and
efficient implementation for computing planar maps of quadric intersection curves. InProc.
21th Annu. Sympos. Comput. Geom., pages 99–106, 2005.

5. H. Brönnimann, L. Kettner, S. Schirra, and R. Veltkamp. Applications of the generic pro-
gramming paradigm in the design of CGAL. In M. Jazayeri, R. Loos, and D. Musser, editors,
Generic Programming—Proceedings of a Dagstuhl Seminar, LNCS 1766, pages 206–217.
Springer-Verlag, 2000.

6. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. InProc. 2nd GI Conf. on Automata Theory and Formal Languages, volume 6,
pages 134–183. LNCS, Springer, Berlin, 1975. Reprinted with corrections in: B. F. Caviness
and J. R. Johnson (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition,
85–121. Springer, 1998.

7. G. E. Collins and A.-G. Akritas. Polynomial real root isolation using Descartes’ rule of sign.
In SYMSAC, pages 272–275, 1976.

8. T. Culver, J. Keyser, M. Foskey, S. Krishnan, and D. Manocha. Esolid - a system for exact
boundary evaluation.Computer-Aided Design (Special Issue on Solid Modeling), 36, 2003.

9. A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. A Des-
cartes algorithm for polynomials with bit-stream coefficients. InProc. 8th Int. Workshop on
Computer Algebra in Scient. Comput. (CASC), LNCS. Springer, 2005. to appear.

10. A. Eigenwillig, L. Kettner, E. Scḧomer, and N. Wolpert. Complete, exact, and efficient
computations with cubic curves. InProc. 20th Annu. Sympos. Comput. Geom., pages 409–
418, 2004. accepted for Computational Geometry: Theory and Applications.

11. I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards and open
curved kernel. InProc. 20th Annu. Sympos. Comput. Geom., pages 438–446, 2004.

12. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL,
the computational geometry algorithms library.Softw. – Pract. and Exp., 30(11):1167–1202,
2000.

13. E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and implementa-
tion of planar maps in CGAL.ACM Journal of Experimental Algorithmics, 5, 2000. Special
Issue, selected papers of the Workshop on Algorithm Engineering (WAE).

11

14. E. Fogel, D. Halperin, R. Wein, S. Pion, M. Teillaud, I. Emiris, A. Kakargias, E. Tsigari-
das, E. Berberich, A. Eigenwillig, M. Hemmer, L. Kettner, K. Mehlhorn, E. Schömer, and
N. Wolpert. Preliminary empirical comparison of the performance of constructing arrange-
ments of curved arcs. Technical Report ECG-TR-361200-01, Tel-Aviv University, INRIA
Sophia-Antipolis, MPI Saarbrücken, 2004.

15. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky.Discriminants, Resultants and Multi-
dimensional Determinants. Birkhäuser, Boston, 1994.

16. R. N. Goldman, T. W. Sederberg, and D. C. Anderson. Vector elimination: A technique
for the implicitization, inversion, and intersection of planar parametric rational polynomial
curves.CAGD, 1:327–356, 1984.

17. T. Granlund.GNU MP, The GNU Multiple Precision Arithmetic Library, version 2.0.2, 1996.
18. M. Hemmer, L. Kettner, and E. Schömer. Effects of a modular filter on geometric applica-

tions. Technical Report ECG-TR-363111-01, MPI Saarbrücken, 2004.
19. S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and extensible geom-

etry kernel. InProc. 5th Workshop on Algorithm Engineering (WAE’01), LNCS 2141, pages
76–91, Arhus, Denmark, August 2001. Springer-Verlag.

20. X. Hou and D. Wang. Subresultants with the Bézout matrix. InProc. Fourth Asian Symp. on
Computer Math. (ASCM 2000), pages 19–28. World Scientific, Singapore New Jersey, 2000.

21. V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and
geometric computation. InProc. 15th Annu. Sympos. Comput. Geom., pages 351–359, 1999.

22. L. Kettner and S. N̈aher. Two computational geometry libraries: LEDA and CGAL. In J. E.
Goodman and J. O’Rourke, editors,Handbook of Disc. and Comput. Geom., pages 1435–
1463. CRC Press, second edition, 2004.

23. J. Keyser, T. Culver, D. Manocha, and Shankar Krishnan. MAPC: A library for efficient and
exact manipulation of algebraic points and curves. InProc. 15th Annu. Sympos. Comput.
Geom., pages 360–369, 1999.

24. R. Loos. Generalized polynomial remainder sequences. In B. Buchberger, G. E. Collins, and
R. Loos, editors,Computer Algebra: Symbolic and Algebraic Computation, pages 115–137.
Springer, 2nd edition, 1983.

25. K. Mehlhorn and S. N̈aher.LEDA: A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, Cambridge, UK, 2000.

26. G. Rote. Division-free algorithms for the determinant and the pfaffian: algebraic and combi-
natorial approaches. In H. Alt, editor,Computational Discrete Mathematics, pages 119–135.
Springer-Verlag, 2001. LNCS 2122.

27. F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots.J. Comput.
Applied Math., 162:33–50, 2004.

28. S. Schmitt. The diamond operator – implementation of exact real algebraic numbers. In
Proc. 8th Internat. Workshop on Computer Algebra in Scient. Comput. (CASC 2005), LNCS.
Springer, 2005. to appear.

29. R. Seidel and N. Wolpert. On the exact computation of the topology of real algebraic curves.
In Proc. 21th Annual Symposium on Computational Geometry, pages 107–115, 2005.

30. R. Wein. High level filtering for arrangements of conic arcs. InESA 2002, LNCS 2461, pages
884–895, 2002.

31. N. Wolpert. Jacobi curves: Computing the exact topology of arrangements of non-singular
algebraic curves. InESA 2003, LNCS 2832, pages 532–543, 2003.

12

